выживания снижается[44]. Тем не менее важно отметить, что повреждение легких, вызванное воспалением, предшествует возможности обнаружения потери функции с помощью спирометрии. Захват воздуха, утолщение бронхиальной стенки и бронхоэктаз можно обнаружить у детей с CF с помощью компьютерной томографии высокого разрешения[45][46][47][48] и рентгенографии грудной клетки[49]. Аналогично неоднородность газообмена в легких можно заметить значительно раньше, до проведения спирометрических измерений[50][51][52]. К сожалению, опубликовано относительно мало данных, описывающих эпидемиологию и прогрессирование ранних структурных изменений или изменений газообмена в легких при CF, тогда как спирометрические данные широко доступны. Хотя Rosenthal[53] предположил, что использование врачами ОФВ1 как индикатора состояния здоровья при CF является спорным, эта мера остается влияющим и направляющим фактором лечения пациента, включая (но не ограничиваясь) определение стадии заболевания легких и фенотипа агрессивности заболевания[54][55], подтверждение диагноза обострения заболевания легких[56], оценку ответа на лечение обострения[57][58][59][60][61][62] и демонстрацию эффективности лечения в контролируемых клинических испытаниях CF[63][64][65][66][67][68]. Для оценки доли ОФВ1, которая сохраняется у пациентов по сравнению с референтной популяцией того же пола, роста и возраста (% расчетного показателя ОФВ1), применено несколько различных нормативных уравнений[69]. В данной главе, если не указано иное, % расчетного показателя ОФВ1 определяют, используя референтные уравнения Wang et al.[70] для девочек и девушек в возрасте вплоть до 15 лет и для мальчиков и юношей в возрасте вплоть до 17 лет, а для пациентов старшего возраста применено референтное уравнение Hankinson et al.[71].
3. Вариабельность прогрессирования заболевания легких
Неудивительно, что у пациентов с CF, умирающих в более молодом возрасте, наблюдаются более высокие средние скорости падения ОФВ1 за период их жизни по сравнению с теми, которые умирают в более старшем возрасте[72]. Тем не менее скорости снижения ОФВ1 не являются постоянными на протяжении всех возрастных периодов[73][74]. Только у малой части детей с CF наблюдается существенное падение ОФВ1 к 6-летнему возрасту. Например, 91,0 % из 3456 детей в возрасте 6 лет в исследовании ESCF имело ОФВ1, составляющий более 70 % расчетного показателя, причем у 83,3 % ОФВ1 составлял более 80 % расчетного показателя, а у 68,1 % ОФВ1 – более 90 % расчетного показателя[75]. К сожалению, средние скорости снижения ОФВ1 возрастают по мере того, как дети становятся старше, и в исследовании
44
Kerem E, Reisman J, Corey M, Canny GJ, Levison H. Prediction of mortality in patients with cystic fibrosis. N Engl J Med 1992;326:1187-91
45
Bonnel AS, Song SM, Kesavarju К et al. Quantitative air-trapping analysis in children with mild cystic fibrosis lung disease. Pediatr Pulmonol 2004; 38:396-105
46
Sly PD, Brennan S, Gangell С et al. Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med 2009; 180:146-52
47
Stick SM, Brennan S, Murray С et al. Bronchiectasis in infants and preschool children diagnosed with cystic fibrosis after newborn screening. J Pediatr 2009; 155:623-8
48
Pillarisetti N, Linnane B, Ranganathan S; AREST CF. Early bronchiectasis in cystic fibrosis detected by surveillance CT. Respirology 2010; 15:1009-11
49
Farrell PM, Li Z, Kosorok MR et al. Longitudinal evaluation of bronchopulmonary disease in children with cystic fibrosis. Pediatr Pulmonol 2003; 36:230-40
50
Gustafsson PM, Aurora P Lindblad A. Evaluation of ventilation maldistribution as an early indicator of lung disease in children with cystic fibrosis. Eur Respir J 2003; 22:972-9
51
Kraemer R, Blum A, Schibler A, Ammann RA, Gallati S. Ventilation inhomogeneities in relation to standard lung function in patients with cystic fibrosis. Am J Respir Crit Care Med 2005; 171:371-8
52
Kieninger E, Singer F, Fuchs О et al. Long-term course of lung clearance index between infancy and school-age in cystic fibrosis subjects. J Cyst Fibros 2011; 10:487-90
53
Rosenthal M. How good are pulmonary function tests as an indicator of short and long term health status? Pediatr Pulmonol 2009; S32:171-2
54
Konstan MW, Wagener JS, VanDevanter DR. Characterizing aggressiveness and predicting future progression of CF lung disease. J Cyst Fibros 2009;8S:S15-S19
55
Schluchter MD, Konstan MW, Drumm ML, Yankaskas JR, Knowles MR. Classifying severity of cystic fibrosis lung disease using longitudinal pulmonary function data. Am J Respir Crit Care Med 2006; 174:7 80-6
56
Rabin HR, Butler SM, Wohl ME et al. Epidemiologic study of cystic fibrosis. Pulmonary exacerbations in cystic fibrosis. Pediatr Pulmonol 2004; 37:400-6
57
Regelmann WE, Elliott GR, Warwick WJ, Clawson CC. Reduction of sputum Pseudomonas aeruginosa density by antibiotics improves lung function in cystic fibrosis more than do bronchodilators and chest physiotherapy alone. Am Rev Respir Dis 1990; 141:914-21
58
Smith AL, Fiel S, Mayer-Hamblett N, Ramsey B, Burns JL. Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. Chest 2003; 123:1495-502
59
BlumerJL, Saiman L, Konstan MW, Melnick D. The efficacy and safety of meropenem and tobramycin vs ceftazidime and tobramycin in the treatment of acute pulmonary exacerbations in patients with cystic fibrosis. Chest 2005; 128:2336-16
60
Sanders DB, Hoffman LR, Emerson J et al. Return of FEV(1) after pulmonary exacerbation in children with cystic fibrosis. Pediatr Pulmonol 2010;45:127-34
61
Collaco JM, Green DM, Cutting GR, Naughton KM, Mogayzel PJ Jr. Location and duration of treatment of cystic fibrosis respiratory exacerbations do not affect outcomes. Am J Respir Crit Care Med 2010; 182:1137-13
62
VanDevanter DR, O'Riordan MA, Blumer JL, Konstan MW. Assessing time to pulmonary function benefit following antibiotic treatment of acute cystic fibrosis exacerbations. Respir Res 2010; 11:137
63
Fuchs HJ, Borowitz DS, Christiansen DH et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. N Engl J Med 1994; 331:637-12
64
Ramsey BW, Pepe MS, Quan JM et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. N Engl J Med 1999; 340:23-30
65
Saiman L, Marshall ВС, Mayer-Hamblett N et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 2003;290:1749-56
66
Jaques A, Daviskas E, Turton JA et al. Inhaled mannitol improves lung function in cystic fibrosis. Chest 2008;133:1388-96
67
European Medicines Agency, Committee for Medicinal Products for Human Use (CHMP). Guideline on the clinical development of medicinal products for the treatment of cystic fibrosis. EMEA/ CHMP/EWP/9147/2008, October, 2009. Available at: http://www.emea.europa.eu/pdfs/human/ewp/914708en.pdf. Accessed 18 September 2012
68
Ramsey BW, Davies J, McElvaney NG et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 2011;365:1663-72
69
Rosenfeld M, Pepe MS, Longton G, Emerson J, FitzSimmons S, Morgan
70
Wang X, Dockery DW, Wypij D, Fay ME, Ferris BG. Pulmonary function between 6 and 18 years of age. Pediatr Pulmonol 1993; 15:75-88
71
Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med 1999; 159:179-87
72
Corey M, Edwards L, Levison H, Knowles M. Longitudinal analysis of pulmonary function decline in patients with cystic fibrosis. J Pediatr 1997;131:809-14
73
Konstan MW, Morgan WJ, Butler SM et al. Risk factors for rate of decline in forced expiratory volume in one second in children and adolescents with cystic fibrosis. J Pediatr 2007; 151:134-9
74
Konstan MW, Wagener JS, Yegin A, Millar SJ, Pasta DJ, VanDevanter DR. Design and powering of cystic fibrosis clinical trials using rate of FEV1 decline as an efficacy endpoint. J Cyst Fibros 2010; 9:332-8
75
VanDevanter DR, Wagener JS, Pasta DJ et al. Pulmonary outcome prediction (POP) tools for cystic fibrosis patients. Pediatr Pulmonol 2010;45:1156-66