Blanchard et al., “Lesions of Structures Showing FOS Expression to Cat Presentation: Effects on Responsivity to a Cat, Cat Odor, and Nonpredator Threat,” Nsci Biobehav Rev 29 (2005): 1243.
49
G. Holstege, “Brain Activation During Human Male Ejaculation,” J Nsci 23 (2003): 9185; H. Lee et al., “Scalable Control of Mounting and Attack by Ers1+ Neurons in the Ventromedial Hypothalamus,” Nat 509 (2014): 627; D. Anderson, “Optogenetics, Sex, and Violence in the Brain: Implications for Psychiatry,” BP 71 (2012): 1081.
50
K Blair, “Neuroimaging of Psychopathy and Antisocial Behavior: A Targeted Review,” Curr Psychiatry Rep 12 (2010): 76; K. Kiehl, The Psychopath Whisperer: The Nature of Those Without Conscience (Woodland Hills, CA: Crown Books, 2014); M. Koenigs et al., “Investigating the Neural Correlates of Psychopathy: A Critical Review,” Mol Psychiatry 16 (2011): 792.
51
Здесь весьма интересные рассуждения об импульсивности лобной коры: J. Dalley et al., “Impulsivity, Compulsivity, and Top-Down Cognitive Control,” Neuron 69 (2011): 680.
52
J. Rilling and T. Insel, “The Primate Neocortex in Comparative Perspective Using MRI,” J Hum Evol 37 (1999): 191; R. Barton and C. Venditti, “Human Frontal Lobes Are Not Relatively Large,” PNAS 110 (2013): 9001; Y. Zhang et al., “Accelerated Recruitment of New Brain Development Genes into the Human Genome,” PLoS Biol 9 (2011): e1001179; G. Miller, “New Clues About What Makes the Human Brain Special,” Sci 330 (2010): 1167; K. Semendeferi et al., “Humans and Great Apes Share a Large Frontal Cortex,” Nat Nsci 5 (2002): 272; P. Schoenemann, “Evolution of the Size and Functional Areas of the Human Brain,” Ann Rev of Anthropology 35 (2006): 379.
53
J. Allman et al., “The von Economo Neurons in the Frontoinsular and Anterior Cingulate Cortex,” ANYAS 1225 (2011): 59; C. Butti et al., “Von Economo Neurons: Clinical and Evolutionary Perspectives,” Cortex 49 (2013): 312; H. Evrard et al., “Von Economo Neurons in the Anterior Insula of the Macaque Monkey,” Neuron 74 (2012): 482.
54
E. Miller and J. Cohen, “An Integrative Theory of Prefrontal Cortex Function,” Ann Rev of Nsci 24 (2001): 167.
55
V. Mante et al., “Context-Dependent Computation by Recurrent Dynamics in Prefrontal Cortex,” Nat 503 (2013): 78. Вот еще несколько публикаций, где обсуждается вовлечение лобной коры, когда требуется переключиться на другую задачу: S. Bunge, “How We Use Rules to Select Actions: A Review of Evidence from Cognitive Neuroscience,” SCAN 4 (2004): 564; E. Crone et al., “Evidence for Separable Neural Processes Underlying Flexible Rule Use,” Cerebral Cortex 16 (2005): 475; R. Passingham et al., “Specialisation Within the Prefrontal Cortex: The Ventral Prefrontal Cortex and Associative Learning,” Exp Brain Res 133 (2000): 103; D. Liu et al., “Medial Prefrontal Activity During Delay Period Contributes to Learning of a Working Memory Task,” Sci 346 (2014): 458.
56
J. Baldo et al., “Memory Performance on the California Verbal Learning Test-II: Findings from Patients with Focal Frontal Lesions,” J the Int Neuropsychological Soc 8 (2002): 539.
57
D. Freedman, “Categorical Representation of Visual Stimuli in the Primate Prefrontal Cortex,” Sci 291 (2001): 312. Еще примеры кодировки разных категорий: D. McNamee et al., “Category-Dependent and Category-Independent Goal-Value Codes in Human Ventromedial Prefrontal Cortex,” Nat Nsci 16 (2013): 479. R. Schmidt et al., “Canceling Actions Involves a Race Between Basal Ganglia Pathways,” Nat Nsci 16 (2013): 1118.
58
M. Histed et al., “Learning Subtracts in the Primate Prefrontal Cortex and Striatum: Sustained Activity Related to Successful Actions,” Neuron 63 (2004): 244. Вот еще несколько хороших примеров того, как лобная кора продолжает придерживаться выбранной линии: D. Crowe et al., “Prefrontal Neurons Transmit Signals to Parietal Neurons That Reflect Executive Control of Cognition,” Nat Nsci 16 (2013): 1484.
59
M. Rigotti et al., “The Importance of Mixed Selectivity in Complex Cognitive Tasks,” Nat 497 (2013): 585; J. Cromer et al., “Representation of Multiple, Independent Categories in the Primate Prefrontal Cortex,” Neuron 66 (2010): 796; M. Cole et al., “Global Connectivity of Prefrontal Cortex Predicts Cognitive Control and Intelligence,” J Nsci 32 (2012): 8988.
60
L. Grossman et al., “Accelerated Evolution of the Electron Transport Chain in Anthropoid Primates,” Trends in Genetics 20 (2004): 578.
61
J. W. De Fockert et al., “The Role of Working Memory in Visual Selective Attention,” Sci 291 (2001): 1803; K. Vohs et al., “Making Choices Impairs Subsequent Self-Control: A Limited-Resource Account of Decision Making, Self-Regulation, and Active Initiative,” JPSP 94 (2008): 883; K. Watanabe and S. Funahashi, “Neural Mechanisms of Dual-Task Interference and Cognitive Capacity Limitation in the Prefrontal Cortex,” Nat Nsci 17 (2014): 601.
62
N. Meand et al., “Too Tired to Tell the Truth: Self-Control Resource Depletion and Dishonesty,” JESP 45 (2009): 594; M. Hagger et al., “Ego Depletion and the Strength Model of Self-Control: A Meta-analysis,” Psych Bull 136 (2010): 495; C. DeWall et al., “Depletion Makes the Heart Grow Less Helpful: Helping as a Function of Self-Regulatory Energy and Genetic Relatedness,” PSPB 34 (2008): 1653; W. Hofmann et al., “And Deplete Us Not into Temptation: Automatic Attitudes, Dietary Restraint, and Self-Regulatory Resources as Determinants of Eating Behavior,” JESP 43 (2007): 497.
63
К сноске: M. Inzlicht and S. Marcora, “The Central Governor Model of Exercise Regulation Teaches Us Precious Little About the Nature of Mental Fatigue and Self-Control Failure,” Front Psych 7 (2016): 656.
64
J. Fuster, “The Prefrontal Cortex – an Update: Time Is of the Essence,” Neuron 30 (2001): 319.
65
K. Yoshida et al., “Social Error Monitoring in Macaque Frontal Cortex,” Nat Nsci 15 (2012): 1307; T. Behrens et al., “Associative Learning of Social Value,” Nat 456 (2008): 245.
66
R. Dunbar, “The Social Brain Meets Neuroimaging,” TICS 16 (2011): 101; K. Bickart et al., “Intrinsic Amygdala-Cortical Functional Connectivity Predicts Social Network Size in Humans” J Nsci 32 (2012): 14729; K. Bickart, “Amygdala Volume and Social Network Size in Humans,” Nat Nsci 14 (2010): 163; R. Kanai et al., “Online Social Network Size Is Reflected in Human Brain Structure,” Proc