corner of the conference room. Burnet remembered him; he had come in during the meeting, bringing coffee and mugs, which he had put on the sideboard. Then he had sat down in the corner for the rest of the meeting. Burnet had assumed he was a junior member of the firm, but now the young man was speaking with confidence.
“Let’s face it, Mr. Burnet,” he said, “you’ve been screwed. It turns out your cells are very rare and valuable. They’re efficient manufacturers of cytokines, chemicals that fight cancer. That’s the real reason you survived your disease. As a matter of fact, your cells churn out cytokines more efficiently than any commercial process. That’s why those cells are worth so much money. The UCLA doctors didn’t create anything or invent anything. They didn’t genetically modify anything. They just took your cells, grew them in a dish, and sold the dish to BioGen. And you, my friend, were screwed.”
“Who are you?” Burnet said.
“And you have no hope of justice,” the young man continued, “because the courts are totally incompetent. The courts don’t realize how fast things are changing. They don’t understand we are already in a new world. They don’t get the new issues. And because they are technically illiterate, they don’t understand what procedures are done—or in this case, not done. Your cells were stolen and sold. Plain and simple. And the court decided that was just fine.”
Burnet gave a long sigh.
“But,” the man continued, “thieves can still get their comeuppance.”
“How’s that?”
“Because UCLA did nothing to change your cells, another company could take those same cells, make minor genetic modifications, and sell them as a new product.”
“But BioGen already has my cells.”
“True. But cell lines are fragile. Things happen to them.”
“What do you mean?”
“Cultures are vulnerable to fungus, bacterial infection, contamination, mutation. All kinds of things can go wrong.”
“BioGen must take precautions…”
“Of course. But sometimes the precautions are inadequate,” the man said.
“Who are you?” Burnet said again. He was looking around, through the glass walls of the conference room, at the larger office outside. He saw people walking back and forth. He wondered where his daughter had gone.
“I’m nobody,” the young man said. “You never met me.”
“You have a business card?”
The man shook his head. “I’m not here, Mr. Burnet.”
Burnet frowned. “And my daughter—”
“Has no idea. Never met her. This is between us.”
“But you’re talking about illegal activity.”
“I’m not talking at all, because you and I have never met,” the man said. “But let’s consider how this might work.”
“Okay…”
“You can’t legally sell your cells at this point, because the court has ruled you no longer own them—BioGen does. But your cells could be obtained from other places. Over the course of your life, you’ve given blood many times in many places. You went to Vietnam forty years ago. The army took your blood. You had knee surgery twenty years ago in San Diego. The hospital took your blood, and kept your cartilage. You’ve consulted various doctors over the years. They ran blood tests. The labs kept the blood. So your blood can be found, no problem. And it can be acquired from publicly available databases—if, for example, another company wanted to use your cells.”
“And what about BioGen?”
The young man shrugged. “Biotechnology is a difficult business. Contaminations happen every day. If something goes wrong in their labs, that’s not your problem, is it?”
“But how could—”
“I have no idea. So many things can happen.”
There was a short silence. “And why should I do this?” Burnet said.
“You’ll get a hundred million dollars.”
“For what?”
“Punch biopsies of six organ systems.”
“I thought you could get my blood elsewhere.”
“In theory. If it came to litigation, that would be claimed. But, in practice, any company would want fresh cells.”
“I don’t know what to say.”
“No problem. Think it over, Mr. Burnet.” The young man stood, pushed his glasses up his nose. “You may have been screwed. But there’s no reason to bend over for it.”
From Beaumont College Alumni News
STEM CELL DEBATE RAGES
Effective Treatments “Decades Away” Prof. McKeown Shocks Audience
By Max Thaler
Speaking to a packed audience in Beaumont Hall, famed biology professor Kevin McKeown shocked listeners by calling stem cell research “a cruel fraud.”
“What you have been told is nothing more than a myth,” he said, “intended to ensure funding for researchers, at the expense of false hopes for the seriously ill. So let’s get to the truth.”
Stem cells, he explained, are cells that have the ability to turn themselves into other kinds of cells. There are two kinds of stem cells. Adult stem cells are found throughout the body. They are found in muscle, brain, and liver tissue, and so on. Adult stem cells can generate new cells, but only of the tissue in which they are found. They are important because the human body replaces all its cells every seven years.
Research involving adult stem cells is for the most part not controversial. But there is another kind of stem cell, the embryonic stem cell, that is highly controversial. It is found in umbilical cord blood, or derived from young embryos. Embryonic stem cells are pluripotent, meaning they can develop into any kind of tissue. But the research is controversial because it involves the use of human embryos, which many people feel, for religious and other reasons, have the rights of human beings. This is an old debate not likely to be resolved soon.
SCIENTISTS SEE A BAN ON RESEARCH
The current American administration has said that embryonic stem cells can be taken from existing research lines, but not from new embryos. Scientists regard existing lines as inadequate, and thus view the ruling a de facto ban on research. That’s why they are going to private centers to carry out their research, without federal grants.
But in the end, the real problem isn’t simply a lack of stem cells. It’s the fact that in order to produce therapeutic effects, scientists need each person to have his or her own pluripotent stem cells. This would allow us to regrow an organ, or to repair damage from injury or disease, or to undo paralysis. This represents the great dream. No one is able to perform these therapeutic miracles now. No one even has an inkling how it might be done. But it requires the cells.
Now, for newborns, you can collect umbilical cord blood and freeze it, and people are doing that with their newborns. But what about adults? Where will we get pluripotent stem cells?
That’s the big question.
TOWARD THE THERAPEUTIC DREAM
All we adults have left is adult stem cells, which can make only one kind of tissue. But what if there were a way to convert adult stem cells back into embryonic stem cells? Such a procedure would enable every adult to have a ready source of his or her own embryonic stem cells. That would make the therapeutic dream possible.
Well, it turns out that you can reverse adult stem cells, but only if you insert them into an egg. Something within the egg unwinds the differentiation and converts the adult stem cell back into