in his suite of six offices, with three plants attached to polygraph equipment in three separate rooms at the other end of the laboratory. His fourth polygraph machine, attached to a fixed valve resistor to ensure that there was no sudden surge of voltage from the equipment, acted as the control.
Microcomputers had yet to be invented, as Backster set up his lab in the late sixties. To perform the task, Backster created an innovative mechanical programmer, which operated on a time-delay switch, to set off each event in the automation process. After flipping the switch, Backster and Henson would leave the lab, so they and their thoughts would not influence the results. He had to eliminate the possibility that the plants might be more attuned to him and his colleague than a minor murder of brine shrimp down the hallway.
Backster and Henson tried their test numerous times. The results were unambiguous: the polygraphs of the electroded plants spiked a significant number of times just at the point when the brine shrimp hit the boiling water. Years after he had made this discovery – and after he became a great fan of Star Wars – he would think of this moment as one in which his plants picked up a major disturbance in the Force, and he had discovered a means of measuring it.2 If plants could register the death of an organism three doors away, it must mean that all life forms were exquisitely in tune with each other. Living things must be registering and passing telepathic information back and forth at every moment, particularly at moments of threat or death.
Backster published the results of his experiment in several respected journals of psychic research and gave a modest presentation before the Parapsychology Association during its tenth annual meeting.3 Parapsychologists recognized Backster’s contribution and replicated it in a number of independent laboratories, notably that of Alexander Dubrov, a Russian doctor of botany and plant physiology.4 It was even glorified in a bestselling book, The Secret Life of Plants.5 But among the mainstream scientific community, his research was disparaged as ludicrous, largely because he was not a traditional scientist, and he was ridiculed for what became known as ‘The Backster Effect’. In 1975, Esquire magazine even awarded him one of its 100 Dubious Achievement Awards: ‘Scientist claims yogurt talks to itself’.6
Nonetheless, over the next 30 years Backster ignored his critics and stubbornly carried on with his research, as well as his polygraph business, eventually amassing file drawers full of studies of what he referred to as ‘primary perception’. A variety of plants that had been hooked up to his polygraph equipment showed evidence of a reaction to human emotional highs and lows, especially threats and other forms of negative intention – as did paramecia, mould cultures, eggs and, indeed, yogurt.7 Backster even demonstrated that bodily fluids such as blood and semen samples taken from himself and his colleagues registered reactions mirroring the emotional state of their hosts; the blood cells of a young lab assistant reacted intensely the moment he opened a Playboy centrefold and caught sight of Bo Derek in the nude.8
These reactions were not dependent on distance; any living system attached to a polygraph reacted similarly to his thoughts, whether he was in the room or miles away. Like pets, they had become attuned to their ‘owner’. These organisms were not simply registering his thoughts; they were communicating telepathically with all the living things in their environment. The live bacteria in yogurt displayed a reaction to the death of other types of bacteria and even evidenced a desire to be ‘fed’ with more of its own beneficial bacteria. Eggs registered a cry of alarm and then resignation when one of their number was dropped in boiling water. Plants appeared to react in real time to any break in continuity with the living beings in their environment. They even appeared to react at the moment when their caretakers, who were away from the office, decided to return.9
His major difficulty was designing experiments that could demonstrate an effect scientifically. Even though his laboratory experiments were now entirely automated, when he left the office, the plants would remain attuned to him, no matter now far away he went. If Backster and his partner were at a bar a block away during an experiment, he would discover that the plants were not responding to the brine shrimp, but to the rising and falling animation of their conversations. It got so difficult to isolate reactions to specific events that eventually he had to design experiments that would be carried out by strangers in another lab.
Repeatability remained another big problem. Any tests required spontaneity and true intent. He had discovered this when the famous remote viewer Ingo Swann had come to visit him at his lab in October 1971. Swann wanted to repeat Backster’s initial experiment with his Dracaena. As expected, the plant’s polygraph began to spike when Swann imagined burning the plant with a match. He tried it again, and the plant reacted wildly, then stopped.
‘What does that mean?’ Swann asked.
Backster shrugged. ‘You tell me.’
The thought that occurred to Swann was so bizarre that he was not sure whether to say it aloud. ‘Do you mean,’ he said, ‘that it has learned that I’m not serious about really burning its leaf? So that it now knows it need not be alarmed?’
‘You said it, I didn’t,’ Backster replied. ‘Try another kind of harmful thought.’
Swann thought of putting acid in the plant’s pot. The needle on the polygraph again began to zigzag wildly. Eventually, the plant appeared to understand that Swann was not serious. The polygraph tracing flat-lined. Swann, a plant lover who was already convinced that plants were sentient, was nevertheless shocked at the thought that plants could learn to differentiate between true and artificial human intent: a plant learning curve.10
Although certain questions remain about Backster’s unorthodox research methods, the sheer bulk of his evidence argues strongly for some sort of primary responsiveness and attuning, if not sentience, present in all organisms, no matter how primitive. But for my purposes, Backster’s real contribution was his discovery of the telepathic communication carrying on between every living thing and its environment. Somehow, a constant stream of messages was being sent out, received and replied to.
Backster had to wait some years to discover the mechanism of this communication, which became apparent when physicist Fritz-Albert Popp discovered biophotons.11 At first Popp believed that a living organism used biophoton emissions solely as a means of instantaneous, non-local signalling from one part of the body to another – to send information about the global state of the body’s health, say, or the effects of any particular treatment. But then Popp grew intrigued by the most fascinating effect of all: the light seemed to be a communications system between living things.12 In experiments with Daphnia, a common water flea, he discovered that female water fleas were absorbing the light emitted from each other and sending back wave interference patterns, as though they had taken the light sent to themselves and updated it with more information. Popp concluded that this activity may be the mechanism enabling fleas to stay together when they swarm – a silent communication holding them together like an invisible net.13
He decided to examine the light emissions between dinoflagellates, luminescent algae that cause phosphorescence in seawater. These single-celled organisms sit somewhere between an animal and a plant in the evolutionary scale; although they are classified as a plant, they move like a primitive animal. Popp discovered that the light of each dinoflagellate was coordinated with