силы, расстояние до источника сократится, сила увеличится – в полном соответствии с законом обратных квадратов Ньютона. То есть стоит звездам прийти в движение, и сила, приводящая к неоднородности, начнет возрастать, поэтому звезды продолжат движение с ускорением. Статическая вселенная вскоре схлопнется под воздействием силы гравитации. Но это стало понятно только после того, как Эйнштейн разработал новую теорию гравитации – теорию, которая, более того, заключала в себе предсказание, что Вселенная определенно не может быть статической и, вероятно, на самом деле не схлопывается, а расширяется.
Альберту Эйнштейну, как и Ньютону, принадлежит множество научных достижений. И главным трудом его жизни, как у Ньютона, стала теория гравитации – ОТО. Насколько важной оказалась его теория для современного понимания Вселенной, можно судить по тому, что специальная теория относительности (СТО) – та, в результате которой была выведена знаменитая формула E = mc2, – это лишь довольно малая часть работы. Однако СТО, опубликованная в 1905 году, стала главной составляющей нового понимания Вселенной. Но прежде чем перейти к этому, остановимся хотя бы ненадолго на основных чертах специальной теории.
Эйнштейн разработал СТО, чтобы решить задачу, сформулированную физикой XIX века. Великий шотландский физик Джеймс Клерк Максвелл вывел уравнения, описывающие поведение электромагнитных волн. Вскоре уравнения Максвелла были скорректированы для описания поведения радиоволн, открытых в 1888 году. Однако Максвелл обнаружил, что уравнения автоматически дают ему определенную скорость,[7] которая определяется как скорость распространения электромагнитных волн. Оказалось, что особая скорость, следующая из уравнений Максвелла, – это в точности скорость света, которую физики к тому времени уже измерили. Следовательно, свет – тоже разновидность электромагнитной волны, подобно радиоволнам, но с меньшей длиной волны (то есть с более высокой частотой). А еще эти уравнения говорили, что свет (как и другие виды электромагнитного излучения, в том числе радиоволны) всегда распространяется с одной и той же скоростью.
Это противоречит нашим представлениям о движении предметов в быту. Если человек, стоящий напротив вас, легким движением бросит вам мяч, вы без труда его поймаете. Если этот человек будет двигаться в вашу сторону в автомобиле со скоростью 80 километров в час и таким же легким движением бросит вам мяч из окна, мяч помчится на вас со скоростью 80 километров в час плюс скорость броска. Так что вас сильно удивило бы, если бы мяч, легким движением выброшенный из машины, долетел бы до вас всего лишь с небольшой скоростью броска, без прибавки скорости автомобиля. Однако со световыми импульсами именно так и происходит. Подобным же образом, если машину, которая едет по прямой дороге со скоростью 80 километров в час, обгоняет машина, которая едет со скоростью 90 километров в час, то вторая машина движется относительно первой со скоростью 10 километров