для фотосинтеза белка ФСII. Эти гены фага стимулируют производство энергии фотосинтеза инфицированной клеткой как можно дольше, что дает возможность вирусу завершить инфекционный цикл до гибели клетки.
В попытке определить, не отражают ли эти наблюдения редкое явление, характерное только для S-PM2 и индивидуального штамма синехококка, ученые исследовали вирусы порядка Myoviridae и Podoviridae, которые инфицируют близкородственный вид Prochlorococcus. В самом деле, все три фага прохлорококка, выбранные для секвенирования, имели общие гены, кодирующие бактериальные белки D1 и D2 комплекса ФСII, а также ген hli, кодирующий индуцируемый коротковолновым светом белок (Sullivan et al., 2006). В определенных штаммах ученые обнаружили дополнительные бактериальные фотосинтезирующие гены. В то время как все эти гены, несомненно, имели цианобактериальное происхождение, что подтверждается сходством их последовательностей, представляется, что эти гены происходят из разных, хотя и близкородственных видов цианобактерий. Примечательно, что ген hli во множестве копий присутствует в бактериальной хромосоме. Ученые полагают, что горизонтальный перенос гена в геном фага, а затем обратный перенос его из ДНК фага могли сыграть решающую роль в избыточности гена в локусе hli бактериальной хромосомы. Возникает картина переноса бактериальных фотосинтезирующих генов от фага в бактериальный геном и обратно. Очевидна выгода от способности фага кодировать эти дополнительные белки. С другой стороны, можно предположить, что такой обмен генами наглядно демонстрирует процесс генетической диверсификации бактерий, что создает преимущества уже для клетки-хозяина. Этот процесс обеспечивает резервуар генетического разнообразия, приобретенного микробной клеткой, что облегчает быструю адаптивную эволюцию. Такая вариабельность может оказаться выгодной в меняющейся окружающей среде, где постоянно возникают новые виды давления отбора. Приспособление к новым условиям является залогом успешности генома. Конечно, этот процесс не ограничивается генами, отвечающими за фотосинтез, и его можно представить себе и в приложении к генам, которые обеспечивают и другие метаболические функции и способны влиять на то, какие экологические ниши может занимать микроб-реципиент. Можно рассматривать фаги определенного хозяина как расширенный пул генов, потенциальный источник генов для инновационных генетических экспериментов. Представьте себе какой-либо ген, позаимствованный в ходе трансдукции и вступивший в пул генов фага, где этот ген будет подвергаться иному давлению отбора, нежели в исходной клетке-хозяине. Ген претерпит воздействие независимого естественного отбора, когда часть быстро реплицирующегося метагенома бактериофагов будет позднее приобретена тем же или другим микробом-хозяином. Ген сохранится, если докажет свое конкурентное преимущество.
О метагеноме фагов надо думать как о корпоративной программе развития, разработанной «отделом кадров» природы для воспитания