Никита Цыганков

Имитационное моделирование


Скачать книгу

Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

      1

      D (dynamic) – модели вида dx/dt = f (x); Q (queuing) – модели систем массового обслуживания; F (finite automata) – конечные автоматы; P (probabilistic automata) – вероятностные автоматы.

/9j/4AAQSkZJRgABAQEAYABgAAD/4QBaRXhpZgAATU0AKgAAAAgABQMBAAUAAAABAAAASgMDAAEAAAABAAAAAFEQAAEAAAABAQAAAFERAAQAAAABAAAOwlESAAQAAAABAAAOwgAAAAAAAYagAACxj//bAEMABAIDAwMCBAMDAwQEBAQFCQYFBQUFCwgIBgkNCw0NDQsMDA4QFBEODxMPDAwSGBITFRYXFxcOERkbGRYaFBYXFv/bAEMBBAQEBQUFCgYGChYPDA8WFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFv/AABEIAYIB3wMBIgACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APv6iiigAooooAKKKKAChvummyf6tuM8dBXI+KPEGpabr6afY2EV15tp5o3TbWZskcDoRxzik3ZAdUXUDLAVXvL+3gsJ7pmXZBGzucjgAZrjWsbu9jEmtX9xdseTbxt5cC5/hKrySPU0248P6NJtzYrGV/ihYx7h/dO373415E84oRk4g41L7DbWyXUbf+0NYj86a4XKowwsC5+VEAxtx/WrUVnd2a50zV7q1HaOTbNGPqGBOPoatjbswPuqAPpjoKSvDnmWJdRyhI3jh48t5MjHiTWbCHfqlhDc26H5rmyIDKPUxPz+RP0rqLOeOeKOWMqySKCrBRhs+lc2yqyMsgyjAgj2qpoWsXekaXFp9zpN7dfZzsinttrK6ZyuAWByBgdO1e1l+YqtG1XcylFp6Hb49h+VH4D8q4+fWteunxZafDZp/wA9LyQO/wCCIcfmwqvef27qEYt73UIVtW++LSNo5JF7htxOB9DXZPMMPDeRGt7WO5wfT9KRSAwGB+VcRo+onw7cfYL+dv7LkP8Aoc8rE/Zm/wCebsf4f7p/CtC18a+H7qPzLe6nnjV2RpYLd3UFeuSq10U6sJxU49QcknZnV0ViaH4l0fVr9rSwuzLMi73QxupA9TkVsqRn/wCvWwx1FFIxO3gd6AFoqhq2p2Wmwia/uYrdGbarOcZqzbvHKqSRuHVhuVgc5+lAE1FFFABRRRQAUUUUAFFFFABRRRQAUjUtYPxC1O80vSbeaxjhd5LqOJvOcqoDHHUdD2oE3ZXNpm28d/pUEk6+YqK0eSw3DjpXFvJrOrsZL+abT7cnAsreQbsf9NJRzz/s0xtB0YxGIafEARy5J3n/AIH1P868qtm2HpScXqxqM5fCS6jI+u61cfaMHT7KQwRQIcLM4++59QCQB+NC6ZFA2+wubiwbs1u/7tvcoQQan02zgsLNbW3UhI+MsSzfiTzmpxwf5V4OIzKtKu5Qdl2NY0Y2fMQQap4osuXSz1eMdCoEEw/TafpgVv8AhnVotWs2uYlMe07JInUBo3HUHHFY7EjA75yMdfw/Oqun3t1omqXksWnzXdnelZB5BXejgYOQSM5wK9TL80lVm413YU6dtUdruHt+VJuHt+VcrN4n1Kf5bHw/Kpx/rL2VYwPfC7iaq3V14quITGb7TVLcForZ90YPdct1Hqa9GpmGFhvIzV27I7cEUq155Ebnw5IL61lu7u3PF9A7GRmz1mTJIyO6jt9K2ofGnh77S1rDf/aZlQP5drE8zBT0JCg4/wD11th8RCtHmhsTzdzqqK5mHxhoU95DALyVJZn8tEktpELN6cgV0UBBU4PSt7lElFFFMAoqC+nigjMszrHGq5d2YAKPcmo9Hv7TUbP7TZXMVxExwHjbcDQBbooooAKKKKACiiigAooooAKKKKACiiigAoPSjIpGI2n6UARSBSh3HtXnnjaG71nxBJaWV1HHHp3lFvMQN+8LBmww+ZSFA6cc81f8eeJpdOvI9I0+NmnuJY4prxU3Lal/u7h3OAcfUUabaRWVv5MReTLFmkc5Zmbklj26dK8vMMX9Xh7vxMILnnyluQHaGB52jJ/vEd6yNN1/S7/xVqXh21lZtQ0kRtdJsx5YkBZee/ArWzhcnoBuPOP17V8raf8AGC60L4r+IvEo0Pzjq2y3aAymMIIsqDu75rzcoyarmftnT+ykZ43GLDOF+7PqrpR7ivHfhL8b5vGniabSpPC1xAsFsZvMtX85s5UYKkD+9XpA1u5Y5i8O6ywHcxIv82rjxWVYrCVXTqLlkdFHFUq8eaMja59aSTIjLegrHk1q+C7h4avhjvLNEn82xVCTxTd+Z5cPh6a5kPVILuOQj64OB1Fc6w0y4tyXukHxa8aWXgLwgfEF5ZzXSidYRFEQGVmOMknjH1rhZvjwLXwlB4mufBmrf2bdP5cV39oi+c5xtxn2qn+1tf6xd/CRnvtC+ww/b4fmkulkYnPdV5rw7UNfkm+Bul+H21CxdbbV5ZPsisxuk4zlh0C88VpRpxs+Zan2eUZXhcVhadSUbucmn8kfZHw58T2vjLwXa+ILe2khhv0yIJWBwM45xx2rQ0/RtLsL2S8sLCG1mmGJWhXar/8AARxXBfsmywy/BTS1jmV2j37lBwV+buK9LVh978vr6Vz+0lF2Wx8zj8PCniqkY/DF2G/D9kMOoXt2ALyS7kW5PaNEzsX6Befxrb8P6rp+sQtdaZcLNGrbGYDv1x+tcrZKp+GWr3ZdjcTpO1yw6hhwU/ADbVjwXmHxbPHb4WGSwiadB91WGQhHuVGPoor7SEklBeR5KOxuZY4YWllbaijLMTgAeprnZvGGjF2MU800KdZYbdmT3+YcH8KXxZrUMTPpFpbre3kyEPERmONTxul9F9qzPDtodL02GzecyeVkjHRcnO1R2UdB7CssZjaeGS5hqMpN22KmlyWOr6tfa1tW6ieXy7WRs8RbACFB6c5rd+Gcnl6fNpTyK0mmztCOefLPzJ+QIX/gNY3hXTm0vRVspNmRNK6hO++R35/76qPxQmmwQNeXTvb3ioRDJBKY5S2OFAH3q8vC45yxuuz2KcbHo1FZHhOO8i0eyXUJ2muvs6mZ3GCWIzjHrz+larEEda+jEDDio2U9QM0y8ubaCPdPcxRgd3kC/wAzXPa1478H6eD9r8U6RCynlWvVzUuF+gnNLdnR5cdv1pHbI+avPbz4yfDe3zu8XaYx77Jt38qrR/HP4YhufFVr9RuP6YraODxDV1CX3GLxVBbyPSMp6/pT4du75TXncHxv+GMrfL4usx/v5A/Minax8ZfANpo9xf2/iWyuvs8ZkMNtOGkcDqFB70PDYhbwf3C+tUekkeik/NmkZQDkVgfD/wAV6L4u0KHWNCvYrq0mUEFGGYz/AHWHY1vsw65/KsZRmm00bRkpK6YSKdowce9cv8RpZZo7XR7R40mu5C0jMgdUiAJOQf7xwv41d8da6NE09XjtHvLqQkRW8fVsAlifYAE1zfhjfeW8WuXly9xd31shJaPYIkIyEC9uveuPGYpYem2viHy875Sbw3a3Flo0FndOrSwphymdnU8DPTAwPWovFPiLS/DzacmpTNGdUvFtLbC53SHoK05GCruP+f8AGvnb9srxzPovjPw3pMen+cNPkXVvM8wgyEHGwjBxXg5Zg3mGN9ney1v9xWNrrD0tOh9FJxhSOQME5796XvXzZZftSahd6pDb/wDCCxobq4VC320naGYc4wOnWvpC3fzFDjoVHfOffNZ5hlOJy92rR5U9vMqhi6WId4PUkoooryzpCiiigBuMHOcD1B5FUbnRdJudTj1F9OhF3CwMdwg2SDn17itCk4HPoR/OtI1HDVA0mtSto6/aPG224bAtbQyWYHRmLYd8diM4/Gt+x1mwm1mbS0uEa8hGWiHXH+P+NYvhlVl8ZXckmd9vaxpCCfl2uxLfjlRWPpIEepWM0RzcHW5lLE8lWJD5/wCA8fhX1+FmqeGp83U8/mdz0QNu+X2/GsLUPE2i217JZ/aXmmTh47aJpWU+4UZqx4k1W10i0jnmcmWQ7YoY+ZJm/uqo6/XoK5nSba4GoXmqzxx2j3gXNtCBtTHdmHDP71WMxUMPScpq7LV29ButajpniTxBBaRN9ot7O3aSaGRWXEhOF3Kecjk1e8MyR2Pi+a23KkOqRCVADx5qcMfbK4qrZ6cYfE19qjbPLvIYY/8AbUp6/WpdagsbmzZdSEXkKN++Vtuwj+IH+FhnrmvJWZf7XGTfu22LjTun3O1hI2c/lUq9OBXKfDF55rG7na8nntTclLRZssVRQBkOfvgkE5966mE5XPvzX0ad7NdSI6ofRRRVDCiiigAooooAKKKKAChvumikb7p+lAFeYZjY9utcZqXxA8NWmt65o9zdSLcaBYrfXuIjhY2BIIPckA8V2Ux2w7eeRjgV86+M/gn4g1b4ieOdYtbpxba7pix6W5u9u+Y8sjDsuVGPqa5q1SpFJwjc7cDRw9WclXnyna2PjTw3D4m0+AaiHt/F0H9paZNJGQST1DE/d6cD8O1DfEnwsvgO48YG8lXSLWdrWSRYSWDBsYA781523wT1XTrzwnqWs3Mi6bo2jvFqp+1bmjmYEBIl78tgfhVGz+FXibSv2cdX8MyQj+17+/FwsUtwDGiBhtGegJUcj1r5rH0akn7WfunsxwWWJqMK19vz/wAtT0Pwh8Y/AniTX4dF0vULhry4QuomtmjG0deoxUupaXon26UrZW1xubO2O1VmOepzXl3gHwd40n+Kmjazr+j6XbWlgjQYtpg5ckDBZcdeK+h4UEQCRxxoO+0bf0rhVadFpU5HLmmFwdKtH2Mub5qX5HDW/heeDWP7U0CwTR77btedkUJKPmwJIxyc46jmtK11TU5bxbDxFONJupGAQWygwXA9UlPfpwcV1eO2cD1NRX1tb3tnJb3VuJopRgxuMg+4ParWKlP+KuY83lUP4ZVh0axRhJJA08inO+eQufwB47dqvKqRRgRqqJ6D5R+VYbWmq6J82ls+o2C/8uUz/vof+uUh++PZufQ1f0XVrHVYy9nMGZDiWJ12vE3oVP3T/OlOk/ijsS6spK0hde0+DUrFrW5tI5wTnZKgZd3qM1w/h/wdo9/BqTPpFi0c99Ki4tY/lVQBn7vbFeis3lgyH+EE/lWR4FXHha1cD/XGST83NFOTVCVjVYirCcVDsU/D+mRLYi3VEs77Tz5fmQIANvUHaOCrd/pWjBfvDMlrqKeS5HySg5jm+hPQ/wCeaXWhJazR6pENxiGyZVGWePv/AN88GrUkdtdWu12jljkGTkbkcevsfcVz3vqaTalrLczpp7y30nUfD66ZNI+oTSeTOo/dKsnLb27bQSB9BUt1ps6zG5sNRks2ljEVwUjDecF4DA9m96QLdaW2IhJdWQ6oGzLAPqfvL9easXWpaauntd3F9bQ2+3O+Rwm3/gNejPMcRVUVT6aHJUoRiuY53QNf022+JV54Ht7V1mtdOTUJbtpAxmLnGG7k85ya6wAdSM49DXyhqHivx43xW1rxZ4d0+W8MpeyinSyMkTW6kbSPwVa9D+A/jf4m638QotP8V6c0Gn+Q7lzYmPLg8DPY+1fQ5rw/Up0pYilUjblTknLVtau3nc83CZlCU3Qa6nq15PrJ8Qta2UFrJ+73W0EpK+ef4yH6ZU4+X0zXQ+FNBg06RZ51FxqEilprpxlsnqFJ6KM449qzbHnxzpoHz+XBOxU/wAhfn/P5fxrsUwW4I+maWXU4RoxlGOrOuSTkxZB8vTpXgv7bF/4i0fwzo+o6DrN3p8LXbxXQtvl3gr8pJ7c177j2rlPi94H07x/4Qfw/qc9zBC86S+bb4Dgqc4Gexr18HUhTrxlUV431MMVTlUpSjHc+DdQvtRvpDJf6rfXTHqbi6d/5nFUc2wODs9819laH+zf8NtPZXm066vyBgm7uCwP4Lius0n4VeANOZTa+EtKXjq1qG/8AQs19Q+IsLT0p09D5+OTYiWspHwWvknhMn6KTTtncQyn6RNX6G2/hXw5bqFh0DTYx/s2iD+QqwuhaSvC6ZaKPaBf8KxlxP2pG0cjl1qH50nav3o5APeM0ivCWwp57/LyB61+ik2gaI64k0eycZ72yH+lcv8RPhX4O8V6ZFY3ekW9qi3Cys1pCsUj4BG0sBnac9PYVpT4mg371Oy7kVMjmk3Gd2fHXwp8T+KvC/iZLnwebi4uZTiaxiQyR3Az0dR396+4Ph1qupa14Vtr7VtGutIvJUzNZ3JBZW+o4xTPBnhDw34Us1tNC0a2slxgtHDhm+rdTXQRqqyEgHOPwrw8zx1PGT5oU+Xz7np4DBzw696V/Lscx48gmtL+216KNpo7VGhuIwPmEbEHevuCBn2zUNtLb3EMcttIk0cn+rKng9849+tdXdjMP1P0rgdJtrCXxFfa3Z23k2qoIYHVSiyHOZHVemCQAD7Gvlc1wtOcPayPShKUHp1OR1L43fDqyvLi2utSuhLbTGKULZuQGU4YZ6dRXRa1pdhriWmq/Ybe68yJXjaaIFnQ/MowV4614R4g8AeP/ALDr+h22laS9vqmpTTrcvcDzVBfKgHHHFfQHw/lx4bsdPuFaK8s7aOKeJh0KqBkeo9xWeZYbB4WlTqYSWvX3k+3Y58LVr1nKNWOnpb/hzmfCvhext7690ttOs91lP5sDNboHML/MpBI7HI/KvQIRtiRSMEL364/CsbXSLDxLpuq/8s5gbG5/4F80Z/76FbY4ZsnoePpXj4upKrGMmzvpRhG6SFooyKK4TUKKKKACmt97n0Ip1ZXivxHonhqzjvde1S20+2kfy1kuGwrMei1pThKc1GMbt9CZzUIuT2JZbuXSdcXVPsdxc28lr5bi35dXByOO4IyPxqta6bcPaRTtKbPUI7iS4Qqu9I9zE7SO4wRkcc55rE/4Wv8ADZfm/wCE20sBc5/encD9Me9dba3MFzYx3UEiyQTIHjkQgIyno2e2a9itUx+GpRpzp2a2Zy05UqktGcl498QWngezt9c1GCbUrzUr+GxM5YKyeY2AFX+FR6D9a7JWzu6cHtj+lfPf7Zmr+Ib/AFbw/ofhWH+0LeJ2vLkWsJlZJUYBMsOOmeK5OL4tftB+YIzomUyquRpR6HAJz2r1P7DnjMHDEOdpta/ocjx0aNd03sj6d8T3d7aRW0tt5SRtLtmmlUsqZ4XOPujPVu2RWj4Z0CXUJX1PxBbJ5u/EFpvEkcKjvkfeYnnPbpWTrjyT+EYppwY5ZxbFlxjzHLoShHYV6FZrtVhn+Lp6VjlNGKp2cdV1OuUrzbWzFQbV2jGBwMU+P7tK1C17KGLRRRTEFFFFABRRRQAUUUUAFFFFABSN908dqWigDF8XabNqmgzWcFwLeZyrRyMMhWVgwyPTIFcrHYXGm65NpVxfzXUdxaC4PmnLK+8hip7KcA49675hzXEW9xJqmu3mqSIIxC5tIov4l2E7s/Uk4rzcy5fqzuLS4sVlFEysf73y1cOM8/e+tfOHxL8UeJh8VPFVnF8RLjQrfSVRrW0JT96dhO1cjqa9W+AHiCTW/hfpFzqmprdanJAftEjkB5CH9eh49K8rHZLVw+GWI51q0vvVyKGOjUruny/0jueR1pc1FqV5aWNnJd3t1Ha28a5eSZtqoPUk9BWMPG3g8c/8JVo5/wC3ta8qjha1VXUdDslWpR+I3m5/u59+lZutaLaX8wuQ8trfR8reW+Fk/Hsw9jU+j6np2rWv2nS7+C8h3Y82Bw4z6ZFJqeq6XpoIvb6CCTGRE7bpD7hBz+lFONanUaitV0Jbp1IGBrut3+i6LdnX4Pk8h1h1K1QmCTIIAkj6xtz9K0NFvtO0/QrG3udSs43FqhG+dVzkAkgE1k+NNcu7/wAL3Nvpui3Tw3OyDz7r9yjZYDoeSOvFfOH7TGmRaf8AFKS2kjtBts4SVtd3lrnOAAx46V9Rk+SwzOTpSfJLV6a9uh5mMxzwtqkFe2h9W3XiHw/FasZtb05Vx8x85Gz7YByc9Me9Ymm65JDvs9N0u7uIVzJbT3JFtEqdwWbsv8jXyL8P0WL4haDLaxR+cupRGPzD8uc96+xNU8PT6jH9r1bUJNQu4m3wxFfLtweu3yx1yOOfWpzvIaGT1Ixcua+vb8DXLcwqYyMlaxnPqev6uzQ6feGYhvnOmxeVbJ7GeXlv+Aiol+HNmzm+1CWO9u9wbynVjb5z0IJyx9zj6V2Gl3MNzZxvCFjVRtEYG3YR1XHtVhs5A75HB+teDLHT2orlR3Rw7Unznzhf/GHxDHDqd7beAbP+z9LuWt3eO92qNp24wAM/hXb3HxJ0/TvGHhrTLlreNdZsWu55HkbNuSuY8DvnDD8K5jWPgZLPeajDD4u1OC11G7eV7VYh5bMzZ5PpXaXXw2s7nxB4U1MBJdQsbY2cUM0Y8uZSp+d+/wC7AJH1qIxnXqqK6n1NeWTQs4LTXv2038zk9U+OFnd+G7LV44Fhvn1p9PMFvc7SIDxuD45yu0816h8A