образностью и др. Это открытая, непрерывно изменяющаяся система, постоянно приобретающая новые смыслы и значения.
Дальнейшее углубление формализации связано с построением искусственных (формализованных) языков, предназначенных для более точного и строгого выражения знания, чем естественный язык, с целью исключить возможность неоднозначного понимания – что характерно для естественного языка (язык математики, логики, химии и др.).
Символические языки математики и других точных наук преследуют не только цель сокращения записи – это можно сделать с помощью стенографии. Язык формул искусственного языка становится инструментом познания. Он играет такую же роль в теоретическом познании, как микроскоп и телескоп в эмпирическом познании.
Именно использование специальной символики позволяет устранить многозначность слов обычного языка. В формализованных рассуждениях каждый символ строго однозначен.
Как универсальное средство для коммуникации и обмена мыслями и информацией язык выполняет множество функций.
Важная задача логики и методологии – как можно точнее передать и преобразовать существующую информацию и тем самым устранить некоторые недостатки естественного языка. Для этого и создаются искусственные формализованные языки. Такие языки используются прежде всего в научном познании, а в последние годы они нашли широкое распространение в программировании и алгоритмизации различных процессов с помощью компьютеров.
Достоинство искусственных языков состоит прежде всего в их точности, однозначности, а самое главное – в возможности представления обычного содержательного рассуждения посредством вычисления.
Значение формализации в научном познании состоит в следующем:
♦ Она дает возможность анализировать, уточнять, определять и разъяснять (эксплицировать) понятия. Обыденные представления (выражаемые в разговорном языке), хотя и кажутся более ясными и очевидными с точки зрения здравого смысла, оказываются неподходящими для научного познания в силу их неопределенности, неоднозначности и неточности.
♦ Она приобретает особую роль при анализе доказательств. Представление доказательства в виде последовательности формул, получаемых из исходных с помощью точно указанных правил преобразования, придает ему необходимую строгость и точность.
♦ Она служит основой для процессов алгоритмизации и программирования вычислительных устройств, а тем самым и компьютеризации не только научно-технического, но и других форм знания.
При формализации рассуждения об объектах переносятся в плоскость оперирования со знаками (формулами). Отношения знаков заменяют собой высказывания о свойствах и отношениях предметов.
Таким путем создается обобщенная знаковая модель некоторой предметной области, позволяющая обнаружить структуру различных явлений и процессов при отвлечении от качественных, содержательных характеристик последних.
Главное