the most strongly contrasted, are said to be opposites, or as among moods of feeling, rapture and misery are opposites. But this distinction is of slight logical importance. Imperfect Positive and Negative couples, like 'happy and unhappy,' which (as we have seen) are not contradictories, are often called Opposites.
The members of any series of Contraries are all included by any one of them and its contradictory, as all colours come under 'red' and 'not-red,' all moods of feeling under 'happy' and 'not-happy.'
CHAPTER V
THE CLASSIFICATION OF PROPOSITIONS
§ 1. Logicians classify Propositions according to Quantity, Quality, Relation and Modality.
As to Quantity, propositions are either Universal or Particular; that is to say, the predicate is affirmed or denied either of the whole subject or of a part of it—of All or of Some S.
All S is P (that is, P is predicated of all S).
Some S is P (that is, P is predicated of some S).
An Universal Proposition may have for its subject a singular term, a collective, a general term distributed, or an abstract term.
(1) A proposition having a singular term for its subject, as The Queen has gone to France, is called a Singular Proposition; and some Logicians regard this as a third species of proposition with respect to quantity, distinct from the Universal and Particular; but that is needless.
(2) A collective term may be the subject, as The Black Watch is ordered to India. In this case, as well as in singular propositions, a predication is made concerning the whole subject as a whole.
(3) The subject may be a general term taken in its full denotation, as All apes are sagacious; and in this case a Predication is made concerning the whole subject distributively; that is, of each and everything the subject stands for.
(4) Propositions whose subjects are abstract terms, though they may seem to be formally Singular, are really as to their meaning distributive Universals; since whatever is true of a quality is true of whatever thing has that quality so far as that quality is concerned. Truth will prevail means that All true propositions are accepted at last (by sheer force of being true, in spite of interests, prejudices, ignorance and indifference). To bear this in mind may make one cautious in the use of abstract terms.
In the above paragraphs a distinction is implied between Singular and Distributive Universals; but, technically, every term, whether subject or predicate, when taken in its full denotation (or universally), is said to be 'distributed,' although this word, in its ordinary sense, would be directly applicable only to general terms. In the above examples, then, 'Queen,' 'Black Watch,' 'apes,' and 'truth' are all distributed terms. Indeed, a simple definition of the Universal Proposition is 'one whose subject is distributed.'
A Particular Proposition is one that has a general term for its subject, whilst its predicate is not affirmed or denied of everything the subject denotes; in other words, it is one whose subject is not distributed: as Some lions inhabit Africa.
In ordinary discourse it is not always explicitly stated whether predication is universal or particular; it would be very natural to say Lions inhabit Africa, leaving it, as far as the words go, uncertain whether we mean all or some lions. Propositions whose quantity is thus left indefinite are technically called 'preindesignate,' their quantity not being stated or designated by any introductory expression; whilst propositions whose quantity is expressed, as All foundling-hospitals have a high death-rate, or Some wine is made from grapes, are said to be 'predesignate.' Now, the rule is that preindesignate propositions are, for logical purposes, to be treated as particular; since it is an obvious precaution of the science of proof, in any practical application, not to go beyond the evidence. Still, the rule may be relaxed if the universal quantity of a preindesignate proposition is well known or admitted, as in Planets shine with reflected light—understood of the planets of our solar system at the present time. Again, such a proposition as Man is the paragon of animals is not a preindesignate, but an abstract proposition; the subject being elliptical for Man according to his proper nature; and the translation of it into a predesignate proposition is not All men are paragons; nor can Some men be sufficient, since an abstract can only be adequately rendered by a distributed term; but we must say, All men who approach the ideal. Universal real propositions, true without qualification, are very scarce; and we often substitute for them general propositions, saying perhaps—generally, though not universally, S is P. Such general propositions are, in strictness, particular; and the logical rules concerning universals cannot be applied to them without careful scrutiny of the facts.
The marks or predesignations of Quantity commonly used in Logic are: for Universals, All, Any, Every, Whatever (in the negative No or No one, see next §); for Particulars, Some.
Now Some, technically used, does not mean Some only, but Some at least (it may be one, or more, or all). If it meant 'Some only,' every particular proposition would be an exclusive exponible (chap. ii. § 3); since Only some men are wise implies that Some men are not wise. Besides, it may often happen in an investigation that all the instances we have observed come under a certain rule, though we do not yet feel justified in regarding the rule as universal; and this situation is exactly met by the expression Some (it may be all).
The words Many, Most, Few are generally interpreted to mean Some; but as Most signifies that exceptions are known, and Few that the exceptions are the more numerous, propositions thus predesignate are in fact exponibles, mounting to Some are and Some are not. If to work with both forms be too cumbrous, so that we must choose one, apparently Few are should be treated as Some are not. The scientific course to adopt with propositions predesignate by Most or Few, is to collect statistics and determine the percentage; thus, Few men are wise—say 2 per cent.
The Quantity of a proposition, then, is usually determined entirely by the quantity of the subject, whether all or some. Still, the quantity of the predicate is often an important consideration; and though in ordinary usage the predicate is seldom predesignate, Logicians agree that in every Negative Proposition (see § 2) the predicate is 'distributed,' that is to say, is denied altogether of the subject, and that this is involved in the form of denial. To say Some men are not brave, is to declare that the quality for which men may be called brave is not found in any of the Some men referred to: and to say No men are proof against flattery, cuts off the being 'proof against flattery' entirely from the list of human attributes. On the other hand, every Affirmative Proposition is regarded as having an undistributed predicate; that is to say, its predicate is not affirmed exclusively of the subject. Some men are wise does not mean that 'wise' cannot be predicated of any other beings; it is equivalent to Some men are wise (whoever else may be). And All elephants are sagacious does not limit sagacity to elephants: regarding 'sagacious' as possibly denoting many animals of many species that exhibit the quality, this proposition is equivalent to 'All elephants are some sagacious animals.' The affirmative predication of a quality does not imply exclusive possession of it as denial implies its complete absence; and, therefore, to regard the predicate of an affirmative proposition as distributed would be to go beyond the evidence and to take for granted what had never been alleged.
Some Logicians, seeing that the quantity of predicates, though not distinctly expressed, is recognised, and holding that it is the part of Logic "to make explicit in language whatever is implicit in thought," have proposed to exhibit the quantity of predicates by predesignation, thus: 'Some men are some wise (beings)'; 'some men are not any brave (beings)'; etc. This is called the Quantification of the Predicate, and leads to some modifications of Deductive Logic which will be referred to hereafter. (See § 5; chap. vii. § 4, and chap. viii. § 3.)
§