Коллектив авторов

Философские проблемы развития искусственного интеллекта


Скачать книгу

эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

      Примечания

      1

      Completely Automated Public Turing test to tell Computers and Humans Apart – тест, по замыслу разработчиков, позволяющий программе определить, кем является пользователь системы: человеком или программой. Впрочем, автору этих строк неизвестна ни одна «капча», которую с высокой вероятностью опознать человек, а ни одна программа не смогла бы.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAIBAQIBAQICAgICAgICAwUDAwMDAwYEBAMFBwYHBwcGBwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wgARCAjJBdwDAREAAhEBAxEB/8QAHQABAAEEAwEAAAAAAAAAAAAAAAECBQYHAwQICf/EABwBAQADAQEBAQEAAAAAAAAAAAABAgMEBQYHCP/aAAwDAQACEAMQAAAB9/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEHXrr2bZDpM+60Fhx9Dzx5P6aN5ep+fZn0eGAABBa6dWueL6nFOf2OtG1104s16fBz7q+b57VAAAAAEHQrvrTh+swzm93p16OzOOWdHjbM7vkrvpxVJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6NN+Bpdb8gstsL1XcYHy/RfO74/+nYR7n+o/nvc/pfCgAQYVy+75Z8P9g0t5n3nWjUAC/a+d6I9j8x9K+1+UXO/OAAAIMex9Hy54f6/oXyf0boV6EEgOa2e6PS+D9U+5+PZr1eDUkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDub273r59205BZb4Xqm4wPl+i+d3x39OxMe5/qP583P6XwgAg83+L+o+S/B/aOtXUCACQDKt/I9wfT/wA/bE7PmQABBp7zvtvFfzX71Z8+4CDkVoWAHZnH119D+KeifY/MakgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUHnfbbK7vlLrfkFlvheqb+O/mv3vO+35Xx385+3RMe5/qP583P6XwgEHlbwv2Hy34X68RJun0vgt9+t+cbC6/me7bCx5+hq/g+u87eR+n4ByfSC5X5feX1X86bK7flgBBpPzPvPEnzP8AQHDFhtHu+R9Gex+XbO7vkr1pwW2nXrzk+l0J5X6Rozyv0KlI9a+/+L+l/b/KagAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQjzZ4v6pv8A9b83uunILLfC9U384+H+sX3fyfEfzP77Ex7n+o/nzc/pfCCDRPlfofin5r97gumnH7Z+l/A9v+j8RUkADhifL/ifrnljwf2CE3/bzvod9d/MeQbedIMB5Pofn58l/S3SrvyK+u/ofxP0b7H5fVIACDU/B9j4g+Y/oG059lSPdX1P88bh9H4mQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDxj83+7euvoPxS66cgst8L1Tfxn8v/QGR9XjeW/C/WImPc/1H8+bn9L4QWTLt+cfx39SWjPt7Nsve31f847O7flJAAAIPLXhfrvlfwv2Eb19X889r/S/glRTD59/J/0rrfi+pHsT6P8ADvRHr/mVQAABBrLi+r8D/J/0f140yffyfo39j/LnbtlIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIPnf8AH/0378+s/m+66cgst8L1TfwT8h/Te1PS+G8qeD+uxMe5/qP583P6XwkQ8seH+v8Alnwv18er/f8Axr077f5NUAAAAcUPn98n/Sut+L6mtX6O/Zfy5l3R42ovP+08HfK/0UNz+l8J7l+o/nupIAAAEHlLwf2Hy/4f66PZP0f4X6E9f81kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFpz6/mX8T/AFl9Nftv5NuunILLfC9U3wHj+mwjm+g8T/M/vMTHuf6j+fNz+l8JTEfOP47+o8P5/cvWnD9JvtP5V71sQAAABBpbzfuvDfy/9CD1h7/4z6c9v8n8YfN/u2gvJ/SB9D/r/wCY8/6/nQAAABBZsu35qfGf1b1q6ba9D4v3n9V/OkpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQ0X5v6B4l+Y/f8A6c/bfyXddOQWW+F6puMD5fovnd8d/TsTHuf6j+fNz+l8JYMfQ+aHxf8AVw39635v7Q+k/CQAAAAB1K6/MX4j+tOtGu5PR+F9z/U/z385vjv6iw3m9zMOnxPo59j/AC5UAAAAAUngb5T+jtWcH2Fyvy/Tr7b+S6pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQeT/A/ZPMPifrX06+2/ky66cgst8L1TcYHy/RfO747+nYmPc/1H8+bn9L4TWnF9T8/Pkv6VHrr6D8U9Ke1+WAAAAACEfOj47+oMJ5vfzvq+e+hn1/8AMnzE+I/rXp133R6Xwnub6j+fAAAAABEPHXz37f538f8AT4T9Oftv5Mu2nGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABB45+d/cPPHj/AKd9Oftv5MuunILLfC9U3GB8v0Xzu+O/p2Jj3P8AUfz5uf0vhNXcP1vgL5P+kR7G+i/DfRHsfmYAAAAAiHz3+S/pfXXH9PmPT4f0V+v/AJg+X3xH9ccUX3v6n537X+m/BQAAAABEPJHgftHmnxf1Yn6Xfa/ylkGvmgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDp2p4z+Y/ftFeV+h/Tn7b+TLrpyCy3wvVNxgfL9F87vjv6diY9z/Ufz5uf0vhNe8f0vzz+Q/plL1X73476j9z8jAAAAAEHzc+M/qbFcPY2J2fMfQb63+afmX8V/WFpz7drd/x3vj6v+cgAAAABB4p+a/etEeV+iSfUH7j+R+5bEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQjTnt+Z51/O/6b0/532/05+2/ky66cgst8L1TcYHy/RfO747+nYmPc/1H8+bn9L4S303+Y3xP9acUX236HxfvL6r+dZAAAAAMZw9X5sfGf1RCd8+r+de0vpPwbwD8p/SWsuH6y4X5vpf9p/KHfviAAAABxxPzg+O/qTFOf2cs38b6Q/Z/y1IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANZepwa99Th0f+V/1drDh+t+nP238mXXTkFlvheqbjA+X6L53fHf07Ex7n+o/nzc/pfCUngr5X+jNUed9lXaPol9h/MGcdPgyAAAAQeT/AAf2PzF4f62Pan0v4Lvn1fzvy/4X635S8L9jHsH6H8Q9Gez+YSAAAAQab877fwt8t/Q49D+x+Zexvovw6QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmHg/9G+O9AfNe35d/L/6zwXl+h+nP238mXXTkFlvheqbjA+X6L53fHf07Ex7n+o/nzc/pfCDSXmfe+HvmP6BG0O/5D3r9V/OXZmoAAAgwPl+g+fPyP9MdSu1718/6SfZfyx374Y/j6Pzf+N/qXo16LvpxfQr6/wDmXLN/IkAAAgtOfX89fkf6ZxLn9qT6G/X/AMyZ/wBfzkgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGmPc8rxF+hfJ+7/zj7Dxb+a/1zjGHrfTn7b+TLrpyCy3wvVNxgfL9F87vjv6diY9z/Ufz5uf0vhBxw8F/K/0bqng+xG9vV/O/aP0f4PzWrIABBiPP7Xgj5T+jcXw9ceyPo/wz0L635nMyPMPh/rPk/wAH9lGZ9Phe8/qv5yyffy5AAILVn1+Fvl/6G1hw/Wj0B635r7M+k/CqkgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdDSnzy/TviMX7Of6Gfl/2/z8/Ov6+tlOv6c/bfyZddOQWW+F6puMD5fovnd8d/TsTHuf6j+fNz+l8IBjmPp/Pr5L+lcZw9YbL7flPYP0X4hsDr+alIHDF9C+V+ieSfn/2q0Z9o3j6f597b+n/AqgDiifDvzH9BaY837sX3Xz/W/wBB+K7z9T8+5ZzlIoidPef9t5F+e/bMQ5/bGedXzvv763+bLnfmkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEQ8j/a/M+dPqvDpR9KfyX9C+anwX9ecEafTr7b+S7rpyCy3wvVNxgfL9F87vjv6diY9z/Ufz5uf0vhABiHN7Xg75b+icR5/bEmfdfzWxOz5i425ccy9TVvB9hYMvSA3b6fwHtf6X8E7VswAOnXXxX81+9aR8z78C+6+dsvt+Uvmvn2rPs1vx/VYxh6wGwev5r3Z9V/O2Qa+fIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrX1ODwP8ApPxtMx3M7fSH8i/SfmN8R/W8xH0y+2/lC+6+eLLfC9U3GB8v0Xzu+O/p2Jj3P9R/Pm5/S+EAAtGfX5H+f/atB+V+j0RYAAC5X5fU/u/kHpL2fyuqYkAAHHDzv5H6d5V8H9js+faAAB2Jz9Gez+W+rPe/He7bCUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyL9r8z51+p8MZRx9HvL8l/UPm38b/VI+mH2v8oX7XzxZb4Xqm4wTl+i+eHyH9NSe4/p/583N6XwwAApRhvN7uhvK/RtW8P1+Jc/tdWutyvy5t1eBtz0Pid8+r+d3jThlIAAAgFtp06O8v9B1J5/2mFc3v2vPs7t+fLejxdo9vx+9/W/Pcl28qQAAAAAAAAAAAAAAAAAAACmGI8/uAgRMAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmqc+Nfwt+s/lmL9nOM78j1fUX5T+v+GPlP6MJ+mH2v8oX7XzxZb4Xqm4gAEgAAAhBIBBIkAAAAAAgQSAIJkAAAAAAAAAAAAAAAAAAAAA4ot8wfhP7F4YmLZxbMyptQhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXnbx8v7/kNc9Pp837t/HUg6PyH6PY/wAh/pHIOT6gn6Yfa/yhftfPFlvheqbgAAAAAAAAAACChElaQAAAAAAAAAAAAAAAAAAAAAAAAAAAOOLfMH4P+yOFKc6ZzWwi1ImAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABet/G9g/T/wA9eO/l/wChrZ+mfhXJ+hfiQFl+E/WLD+YfvGXcP2BP0w+1/lC/a+eLLfC9U3EIwfbh7lb9C2d8pviGvHkGfRa7ZXynR0bZ9GaZJn09S2erenytk8/qYnrx1QuNdcM24toc3qdyNL1TfXu/m4jrx88W27y+xjmnN0bZ8kTKaUcy3Rtlg+vFtfm9bUvV4+X5duLacmbY9/Grar5ZHn096L4hpyY3ryZHn1Y5pzZBn04/py7I5vUz3L0AAAAAAAAAAAAAAABxxb5hfB/2PwrwpE5RbGLZRaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhk3V857e+n/nzUnF9f5W+f/cef+hP4hnt8kDFfzb9msv59+z51w/Zk/TD7X+UL9r54st8L1Tcaz38vyl6fyParpfK7c8T1bZdOY7q+TY9fQtlSvwqda1NzcfuUK666fMphiu3LQpm+HfYdcNy8ft6W7PBs9sujanuzxfv/ABv63xObYd+luzwrvXfLsurUfV5OzOf0+rNcny6tXdPlemPP+o839/zV6pvc66b14vf1N1eRq/p8n07531eo+nx8uz6sH24PRnn/AE3n3v8AnPWHl/Yd1cAAAAAAAAAAAAAAAcUW+YXwf9jcK6axOdM4RfFNOVXiX5ZpxVvcdOa306OSYoiZRVMdic+nXfmnOiLVzXji9CeWacUXqRsns+W1nx/Vcs1oieSa8UX55z4ovSkAAAAAAAAAAAAAAAAAAAAAAAADZHpfCe1vofwztzl88Pk/6Zs/1HxHN+yfywAMB/Kf3Xp/F/q+wOH7Qn6Yfa/yhftfPFlvheqbiwW5vHHrfF3Out/p0ZRn16538va3L7GB9HnYlfkF7p0754vodXdXjYxpzZjj2696PNlNxrrzwlNstlyxPYTi2nLsbn9T1N531fjf1PivWvm/YeZfQ+XrNfb+bs7n9XGtOTuRrwK4Zrxb/wCL6HVnR5XrnzPsPHvq/F9+utotjsLH0dhYenqXo8jKqdGE7cO9+D6HS3b4fqzzfrQAAAAAAAAAAAAAAAOKLfMH4T+xOFoZxOcWwi+HYnD6M/XfzP8AO35L+lPoj9b/ADZ5B8D9n9Hev+YYnh7N404tB+X+iZj0eHt7v+N7lsPMHjfq/rb3fxzzX4/6h6g9r8px3L0vIPz/AOz+3PpPwf59fKf0f7Z+k/CM26fC0v533KIwDl+i2n2/JdKOjYnX815O8L9g1RxfYEAAAAAAAAAAAAAAAAAAAAAAAIc1sfRHu/j/AKt9b8zuEx498f8AUPO3g/sfN+3/AMj1/SfBpAap/G/6E7vzX6Pn/B9qT9MPtf5Qv2vniy3wvVNxBCISiIkglMTCBBIlSVQiYlKJISCASiEiVRTACC