during the New Kingdom. Amun-Re was said to exist in all things, and it was believed that he transcended the boundaries of space and time to be all-seeing and eternal. In this sense, he could be seen as a precursor to the gods of the Judeo-Christian and Islamic traditions.
The walls of Karnak Temple are literally covered with representations of Amun-Re, usually depicted in human form with a double-plumed crown of feathers – the precise meaning of which is unknown. He is most often seen with the Pharaoh, but he also appears at Karnak in animal form, as a ram.
The most spectacular tribute of all to Amun-Re, though, lies in Karnak’s orientation to the wider Universe. The Great Hypostyle Hall, the dominant feature of the temple, is aligned such that on 21 December, the winter solstice and shortest day in the Northern Hemisphere, the disc of the Sun rises between the great pillars and floods the space with light, which comes from a position directly over a small building inside which Amun-Re himself was thought to reside. Standing beside the towering stone columns watching the solstice sunrise is a powerful experience. It connects you directly with the names of the great pharaohs of ancient Egypt, because Amenophis III, Tutankhamen and Rameses II would have stood there to greet the rising December sun over three millennia ago.
The Sun rises at a different place on the horizon each morning because the Earth’s axis is tilted at 23.5 degrees to the plane of its orbit. This means that in winter in the Northern Hemisphere the Earth’s North Pole is tilted away from the Sun and the Sun stays low in the sky. As Earth moves around the Sun, the North Pole gradually tilts towards the Sun and the Sun takes a higher daily arc across the sky until midsummer, when it reaches its highest point. This gradual tilting back and forth throughout the year means that the point at which the Sun rises on the eastern horizon also moves each day. If you stand facing east, the most southerly rising point occurs at the winter solstice. The sunrise then gradually drifts northwards until it reaches its most northerly point at the summer solstice. The ancients wouldn’t have known the reason for this, of course, but they would have observed that at the solstices the sunrise point stops along the horizon for a few days, then reverses its path and drifts in the other direction. The solstices would have been unique times of year and important for a civilisation that revered the Sun as a god.
Standing in Karnak Temple watching the sunrise on this special midwinter day the alignment is obvious, but proving that ancient sites are aligned with events in the sky is difficult and controversial. This is because a temple the size of Karnak will always be aligned with something in the sky, simply because it has buildings that point in all directions! However, a key piece of evidence that convinced most Egyptologists that Karnak’s solstice alignment was intentional concerns the two columns on either side of the building in which Amun-Re resides – one to the left and one to the right when facing the rising Sun. These columns are delicately carved, and it is the inscriptions that suggest the sunrise alignment is deliberate. The left-hand column has an image of the Pharaoh embracing Amun-Re, and on one face are three carved papyrus stems – a plant that only grows along the northern reaches of the Nile. The right-hand column is similar in design, except the Pharaoh embraces Amun-Re wearing the crown of upper Egypt, which is south of Karnak. The three carved stems on this column are lotus blossoms, which only grow to the south.
It seems clear therefore that the columns are positioned and decorated to mark the compass directions around the temple, which is persuasive evidence that the heart of this building is aligned to capture the light from an important celestial event – the rising of the Sun in midwinter. It is a colossal representation of the details of our planet’s orientation and orbit around our nearby star.
The temple represents the fascination of the ancient Egyptians with the movement of the lights they saw in the sky. Their instinct to venerate them was pre-scientific, but the building also appears to enshrine a deepening awareness of the geometry of the cosmos. By observing the varying position of sunrise, an understanding of the Earth’s cycles and seasons developed, which provided essential information for planting and harvesting crops at optimum times. The development of more advanced agricultural techniques made civilisations more prosperous, ultimately giving them more time for thought, philosophy, mathematics and science. So astronomy began a virtuous cycle through which the quest to understand the heavens and their meaning lead to practical and intellectual riches beyond the imagination of the ancients.
The step from observing the regularity in the movement of the heavenly lights to modern science took much of recorded human history. The ancient Greeks began the work, but the correct description of the motion of the Sun, Moon and planets across the sky was discovered in the seventeenth century by Johannes Kepler. Removing the veil of the divine to reveal the true beauty of the cosmos was a difficult process, but the rewards that stem from that innate human fascination with the lights in the sky have proved to be incalculable
By following the light we have mapped our place among the hundreds of billions of stars that make up the Milky Way Galaxy. We have visited our nearest star, Proxima Centauri, and measured its chemical compositions, and those of thousands of other stars in the sky. We have even journeyed deep into the Milky Way and stared into the black hole that lies at the centre of our galactic home. But this is just the beginning…
The Universe is an awe-inspiring place, full of wonder and demanding the answers to so many questions. We have so much to learn and so many places to explore.
OUR PLACE IN THE UNIVERSE
The scale of the Universe is almost impossible to comprehend and yet that’s exactly what we’ve been able to do from the vantage point of the small rock we call Earth. As we have discovered the grand cycles that play out above our heads we have come to realise that we are part of a structure that extends way beyond our solar system and the 200 billion stars that make up our galaxy.
Nathalie Lees © HarperCollins
OUR GALACTIC NEIGHBOURHOOD
From our small rock, we have a grandstand seat to explore our local galactic neighbourhood. Our nearest star, the Sun, is 150 million kilometres (93 million miles) away, but each night when this star disappears from view, thousands more fill the night sky. In the most privileged places on Earth, up to 10,000 stars can be seen with the naked eye, and all of them are part of the galaxy we call home.
A galaxy is a massive collection of stars, gas and dust bound together by gravity. It is a place where stars live and die, where the life cycles of our universe are played out on a gargantuan scale. We think there are around 100 billion galaxies in the observable universe, each containing many millions of stars. The smallest galaxies, known as dwarf galaxies, have as few as ten million stars. The biggest, the giants, have been estimated to contain in the region of 100 trillion. It is now widely accepted that galaxies also contain much more than just the matter we can see using our telescopes. They are thought to have giant halos of dark matter, a new form of matter unlike anything we have discovered on Earth and which interacts only weakly with normal matter. Despite this, its gravitational effect dominates the behaviour of galaxies today and most likely dominated the formation of the galaxies in the early Universe. This is because we now think that around 95 per cent of the mass of galaxies such as our own Milky Way is made up of dark matter. In some sense this makes the luminous stars, planets, gas and dust an after-thought, although because it is highly unlikely that dark matter can form into complex and beautiful structures like stars, planets and people, one might legitimately claim that it’s rather less interesting. The search for the nature of dark matter is one of the great challenges for twenty-first-century physics. We shall return to the fascinating subject of dark matter later in the book.
The word ‘galaxy’ comes from the Greek word galaxias, meaning milky circle. It was first used to describe the galaxy that dominates our night skies, even though the Greeks could have had no concept