lighted white object have contracted so much that, given at first a certain extent of surface, they will have lost more than 3/4 of their size; and, lacking in size, they are also deficient in [seeing] power. Though you might say to me: A little bird (then) coming down would see comparatively little, and from the smallness of his pupils the white might seem black! To this I should reply that here we must have regard to the proportion of the mass of that portion of the brain which is given up to the sense of sight and to nothing else. Or—to return—this pupil in Man dilates and contracts according to the brightness or darkness of (surrounding) objects; and since it takes some time to dilate and contract, it cannot see immediately on going out of the light and into the shade, nor, in the same way, out of the shade into the light, and this very thing has already deceived me in painting an eye, and from that I learnt it.
37
Experiment [showing] the dilatation and contraction of the pupil, from the motion of the sun and other luminaries. In proportion as the sky is darker the stars appear of larger size, and if you were to light up the medium these stars would look smaller; and this difference arises solely from the pupil which dilates and contracts with the amount of light in the medium which is interposed between the eye and the luminous body. Let the experiment be made, by placing a candle above your head at the same time that you look at a star; then gradually lower the candle till it is on a level with the ray that comes from the star to the eye, and then you will see the star diminish so much that you will almost lose sight of it.
[Footnote: No reference is made in the text to the letters on the accompanying diagram.]
38
The pupil of the eye, in the open air, changes in size with every degree of motion from the sun; and at every degree of its changes one and the same object seen by it will appear of a different size; although most frequently the relative scale of surrounding objects does not allow us to detect these variations in any single object we may look at.
39
The eye—which sees all objects reversed—retains the images for some time. This conclusion is proved by the results; because, the eye having gazed at light retains some impression of it. After looking (at it) there remain in the eye images of intense brightness, that make any less brilliant spot seem dark until the eye has lost the last trace of the impression of the stronger light.
II.
Linear Perspective
We see clearly from the concluding sentence of section 49, where the author directly addresses the painter, that he must certainly have intended to include the elements of mathematics in his Book on the art of Painting. They are therefore here placed at the beginning. In section 50 the theory of the "Pyramid of Sight" is distinctly and expressly put forward as the fundamental principle of linear perspective, and sections 52 to 57 treat of it fully. This theory of sight can scarcely be traced to any author of antiquity. Such passages as occur in Euclid for instance, may, it is true, have proved suggestive to the painters of the Renaissance, but it would be rash to say any thing decisive on this point.
Leon Battista Alberti treats of the "Pyramid of Sight" at some length in his first Book of Painting; but his explanation differs widely from Leonardo's in the details. Leonardo, like Alberti, may have borrowed the broad lines of his theory from some views commonly accepted among painters at the time; but he certainly worked out its application in a perfectly original manner.
The axioms as to the perception of the pyramid of rays are followed by explanations of its origin, and proofs of its universal application (58—69). The author recurs to the subject with endless variations; it is evidently of fundamental importance in his artistic theory and practice. It is unnecessary to discuss how far this theory has any scientific value at the present day; so much as this, at any rate, seems certain: that from the artist's point of view it may still claim to be of immense practical utility.
According to Leonardo, on one hand, the laws of perspective are an inalienable condition of the existence of objects in space; on the other hand, by a natural law, the eye, whatever it sees and wherever it turns, is subjected to the perception of the pyramid of rays in the form of a minute target. Thus it sees objects in perspective independently of the will of the spectator, since the eye receives the images by means of the pyramid of rays "just as a magnet attracts iron".
In connection with this we have the function of the eye explained by the Camera obscura, and this is all the more interesting and important because no writer previous to Leonardo had treated of this subject_ (70—73). Subsequent passages, of no less special interest, betray his knowledge of refraction and of the inversion of the image in the camera and in the eye (74—82).
From the principle of the transmission of the image to the eye and to the camera obscura he deduces the means of producing an artificial construction of the pyramid of rays or—which is the same thing—of the image. The fundamental axioms as to the angle of sight and the vanishing point are thus presented in a manner which is as complete as it is simple and intelligible (86—89).
Leonardo distinguishes between simple and complex perspective (90, 91). The last sections treat of the apparent size of objects at various distances and of the way to estimate it (92—109).
General remarks on perspective (40-41).
40
ON PAINTING.
Perspective is the best guide to the art of Painting.
[Footnote: 40. Compare 53, 2.]
41
The art of perspective is of such a nature as to make what is flat appear in relief and what is in relief flat.
The elements of perspective—Of the Point (42-46).
42
All the problems of perspective are made clear by the five terms of mathematicians, which are:—the point, the line, the angle, the superficies and the solid. The point is unique of its kind. And the point has neither height, breadth, length, nor depth, whence it is to be regarded as indivisible and as having no dimensions in space. The line is of three kinds, straight, curved and sinuous and it has neither breadth, height, nor depth. Hence it is indivisible, excepting in its length, and its ends are two points. The angle is the junction of two lines in a point.
43
A point is not part of a line.
44
OF THE NATURAL POINT.
The smallest natural point is larger than all mathematical points, and this is proved because the natural point has continuity, and any thing that is continuous is infinitely divisible; but the mathematical point is indivisible because it has no size.
[Footnote: This definition was inserted by Leonardo on a MS. copy on parchment of the well-known "Trattato d'Architettura civile e militare" &c. by FRANCESCO DI GIORGIO; opposite a passage where the author says: _'In prima he da sapere che punto č quella parie della quale he nulla—Linia he luncheza senza ŕpieza; &c.]
45
1, The superficies is a limitation of the body. 2, and the limitation of a body is no part of that body. 4, and the limitation of one body is that which begins another. 3, that which is not part of any body is nothing. Nothing is that which fills no space.
If one single point placed in a circle may be the starting point of an infinite number of lines, and the termination of an infinite number of lines, there must be an infinite number of points separable from this point, and these when reunited become one again; whence it follows that the part may be equal to the whole.
46
The point, being indivisible, occupies no space. That which occupies no space is nothing. The limiting surface of one thing is the beginning of another. 2. That which is no part of any body is called nothing. 1. That which has no limitations, has no form. The limitations of two conterminous bodies are interchangeably