Various

Scientific American, Volume 40, No. 13, March 29, 1879


Скачать книгу

along with a horse and wagon, as they do in the country, and saw the cradle. He struck a bargain with me and bought the patent right for the State of Connecticut, giving for it his horse and wagon and all the goods he had with him. They afterward made some there, but nothing like as good as mine. It was a beautiful piece of furniture," said Mr. Cooper regretfully, as he thought of it as a thing of the past. "They afterward substituted springs for the weight movement, but that kind was not so good."

      About this time the war with England ended and the market was spoiled for the shearing machines. Then, we believe, Mr. Cooper tried his hand at cabinetmaking, but that failed, and he set up a grocery store where the Bible House now stands. While selling groceries Mr. Cooper made an invention which ought to have made his fortune, but it did not. The story is best told in Mr. Cooper's own words:

      "It was just before the Erie Canal was completed, and I conceived a plan by which to tow boats by the use of all the elevated waters on the line of the canal. To demonstrate that that was practicable I made with my own hands a chain two miles long, and placed posts 200 feet apart in the East River from Bellevue dock down town about a mile. These posts supported grooved wheels to lay the chain in, forming an endless chain. The whole was moved by an overshot waterwheel placed at the Bellevue dock. A reservoir twelve feet square and three deep held the water to turn the wheel."

      At the suggestion of Governor Clinton Mr. Cooper tightened his chain and pulled up the end post just before the grand trial of his device was to come off. He succeeded in getting stone enough to anchor the post, however, and the experiment went off swimmingly. The boat was hooked on to the chain, and the passage back and forward—two miles—was made in eleven minutes.

      "I ran that boat some ten days," says Mr. Cooper, "to let people see what could be done, and carried nearly a thousand people. Part of the time I ran two boats. Once I counted 52 people in one boat. I made the whole chain myself and planted the posts. As I could find no wheels to suit me I made the moulds and cast the wheels myself out of block tin and zinc. It was no small job, I can tell you."

      This was unquestionably a grand invention. In itself it was a perfect success; but it was not used. Mr. Cooper tells why:

      "It demonstrated completely that the elevated water power along the line of the canal and every lock in the canal could be made use of to drive the boats. Governor Clinton gave me $800 for the privilege of buying the right to the plan in case he should want to use it on the Erie Canal. In making the canal he had promised the people along the route that as soon as it was finished they could sell their horses to tow the boats, their grain and fodder to feed the horses, and their provisions for the passengers. On reflection he thought that if he took all that away from them he would have to run the gantlet again, and he could not afford to do that. There never was anything done with the plan until a few years ago, when Mr. Welch, president of the Camden and Amboy Railroad and Canal, invented exactly the same thing and put it in practice on his locks on the canal. He found it saved half the time and great expense. He went to Washington to take out a patent for it, and when he got there he found that I had patented the same thing fifty-three years before. My patent had run out, so he could use the plan on his canal. It has also been used on one lock on the Erie Canal. If they could have used that chain on the whole length of the Erie Canal it would have saved many millions of dollars."

      This would not be a bad place, were there room for it, to speak of "undeveloped" and therefore worthless inventions; and the assumption that if an inventor does not make his invention immediately profitable it must be good for nothing, and should be dispatented. But the moral goes without telling.

      Mr. Cooper's next attempt at invention was made about the same time, but in quite a different direction. It was during the struggle of the Greeks for independence, and wishing to do something for their assistance, Mr. Cooper undertook to make a torpedo boat for them. Mr. Cooper says:

      "It was a small one that could be taken on board ship and used to destroy any vessel that came to destroy them. It was fixed with a rotary steam engine and a screw wheel to propel it. It was intended to be guided from the ship or the shore. There were two steel wires fixed to the tiller of the rudder, and the operator could pull on one side or the other and guide the vessel just as a horse is guided with reins. It was so arranged that at night it would carry a light with its dark side toward the object to be destroyed, and by simply keeping the light in range with the vessel it would be sure to hit it. The torpedo was carried on a little iron rod, projecting in front of the torpedo vessel a few inches under water. Contact would discharge the torpedo and bend this iron rod. This would reverse the action of the engine and cause the torpedo vessel to return right back from whence it came, ready to carry another torpedo."

      Unfortunately the torpedo boat was not ready in time to go with the ship carrying the contributions for Greece. It was stored in Mr. Cooper's factory (he had then turned his attention to glue) and was destroyed by the burning of the factory. It seems to have been quite a promising affair for the time. Mr. Cooper says:

      "I experimented with it at once to see how far it could be guided. I made a steel wire ten miles long and went down to the Narrows to test the matter. I had steel yards fastened to one end of the wire, and to the other end the torpedo vessel as attached. It got about six miles away when a vessel coming into the harbor crossed the wire and broke it. Although the experiment was not complete it showed that for at least six miles I could guide the vessel as easily as I could guide a horse."

      Mr. Cooper's work as the pioneer locomotive builder in this country; his later inventions and improvements in the manufacture of railway iron and wrought iron beams for fireproof buildings; his application of anthracite coal to iron puddling, and his other successes are almost as widely known as his philanthropic efforts for the education and advancement of the industrial classes of this city.

      After all, we are not sure but the story of his long and varied and always honorable career, told by himself, would not be worth, to young people who have to make their way in life through many difficulties, more even than the advantages of the noble institution which bears his name.

      Taste for Reading.—Sir John Herschel has declared that "if he were to pray for a taste which should stand under every variety of circumstance and be a source of happiness and cheerfulness to him through life, it would be a taste for reading." Give a man, he affirms, that taste, and the means of gratifying it, and you cannot fail of making him good and happy; for you bring him in contact with the best society in all ages, with the tenderest, the bravest, and the purest men who have adorned humanity, making him a denizen of all nations, a contemporary of all times, and giving him a practical proof that the world has been created for him, for his solace, and for his enjoyment.

      Africa Crossed Again

      Information has been received by way of Lisbon, March 12, that the Portuguese explorer, Pinto, has succeeded in traversing Africa from west to east, and has reached Transvaal. The latitude of his course across is not mentioned.

      CURIOUS FACTS IN MAGNETISM

      At the meeting of the New York Academy of Sciences February 17th, the article in the March number of Harper's Magazine, entitled "Gary's Magnetic Motor," was incidentally alluded to, and Prof. C. A. Seeley made the following remarks: The article claims that Mr. Gary has made a discovery of a neutral line or surface, at which the polarity of an induced magnet, while moving in the field of the inducing pole, is changed. The alleged discovery appears to be an exaggerated statement of some curious facts, which, although not new, are not commonly recognized. If a bar of iron be brought up, end on, near a magnetic pole, the bar becomes an induced magnet, but an induced magnet quite different from what our elementary treatises seem to predict. On the first scrutiny it is a magnet without a neutral point, and only one kind of magnetism—namely, that of the inducing pole. Moreover, the single pole is pretty evenly distributed over the whole surface, so that if iron filings be sprinkled on the bar they will be attracted at all points and completely cover it. Now, if while the bar is covered by filings it be moved away from the inducing pole, the filings will gradually and progressively fall, beginning at the end nearest the inducing pole and continuing to some point near the middle of the bar; the filings at the remote end will generally be held permanently. When the bar is carried beyond the field of the inducing pole it is simply a weak magnet of ordinary properties—i. e., of two poles