Кай-фу Ли

Сверхдержавы искусственного интеллекта


Скачать книгу

id="n_11">

      11

      Шу К. Google приобретает стартап ИИ за 500 миллионов долларов // TechCrunch. URL: https://techcrunch.com/2014/01/26/google-deepmind/ (26 января 2014 года).

      12

      Разновидность покера.

      13

      Transfer learning (англ.) – суть этого подхода заключается в том, что нейронные сети обучаются какой-то одной задаче, а потом переучиваются на новую, в той или иной степени похожую на предыдущую.

      14

      Линч Ш. Эндрю Ын: почему ИИ – это новое электричество // The Dish [блог] // Stanford News. URL: https://news.stanford.edu/thedish/2017/03/14/andrew-ng-why-ai-is-the-new-electricity/ (14 марта 2017 года).

      15

      Рао А., Вервей Ж. Размеры приза // PwC. URL: https://www.pwc.com/gx/en/issues/analytics/assets/pwc-ai-analysis-sizing-the-prize-report.pdf (27 июня 2017 года).

      16

      Эпштейн Г. Клонер // Forbes. URL: https://www.forbes.com/global/2011/0509/companies-wang-xing-china-groupon-friendster-cloner.html#1272f84055a6 (28 апреля 2011 года).

      17

      孙进, 孙进 李静颖, и 刘佳, “社交媒体冲向互联网巅峰”, 第一财经日报. URL: http://www.yicai.com/news/739256.html (21 апреля 2011 года).

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAQDAwQDAwQEBAQFBQQFBwsHBwYGBw4KCggLEA4RERAOEA8SFBoWEhMYEw8QFh8XGBsbHR0dERYgIh8cIhocHRz/2wBDAQUFBQcGBw0HBw0cEhASHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBz/wgARCAe+BXgDAREAAhEBAxEB/8QAHAABAAICAwEAAAAAAAAAAAAAAAUGBAcBAgMI/8QAGwEBAAIDAQEAAAAAAAAAAAAAAAQFAgMGAQf/2gAMAwEAAhADEAAAAafQfVQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO/uNm3Vnb1WdFj5ebM7OPJ5xgew2uXj47eCe3QPViB5eZQOqfYN1f3ecEZhKwMN+fnok84sHqneXmeVlpl9kSG1zcbHZY91cAMHHfF65Utsh5mWoAV3TYTOyHk5axgY74vXKkM48lnGg9U7y8zzMtEpsjV7TYckpsiZuWmvabA94LXIqo7XIhtc0cFh3V/LwY/myE1Texn5x5DOPX9NhyDgnNsHH82RmuUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALFurd8W3CSWccYOG75+qe/t2+q3HZcf189598x8c9BVPfVXRafS9182mtsMCD1Tfmil+k/UV58xkc448zUVd1tAidB9H3Xzegw+g07Xdhvy24KQzj/O9P9D8/M/q+/wDlPYA1pC6TTVb2O9rXhr1KowOp8qUP1TfttwVwkVAGuYfQahruu+h7n55AabDRlX3OwpfP7jseP+WKL6lYt1d9CW/z3VkHqtWwOo5JfZD+lbv5tXNNj86U30TsdXv1LefLsnPU897++UiNc6Fqe82jO5jaM7mPl2j+n9ng4Pou4+d1jTZ6crexAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPPpa7+axWuVour7rx8z2FM57XMLo9kTOc2hO5j5jpPpnv7r+kbr5xQ4l9qKv636Xuvm1Ai32rIHUg98vMvqC8+Y64h9Dq6B1O1bDlNmTea+WKH6leZdHvK04fWkLpNjzOc+dKb6NB6p3B9YX/yrRlX29Hi3f0Hb/P65pstNVvY72teG8/PdI1nbAefmX0Bb8DHa9+lq3tL5Lod3WfF/NVL9H8/Mvoi4+ea9idBCap25LHj/mmm+kfRVx87pcW70zW9lycG4bLj7hIp53bC+dqb6FW9Nn1e/Ut58u0/X9dryH0OxJvO7rsuN+VaH6lsmbze0Z3L/NVL9K4MTHbyfRdx87rGmz05W9iAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPbq/wCkbn518+VHfVOPbgDZc3mtt2HI06Pc5OWq0b6v51p/okDpn/S91826eofXMGuYXRUmLefUF58x1zD6HWMHp9q2HKbGl878tUX1Hh7vO14W+yqTUFf1uroHUcmbno+orz5joKp7ymRrn6HuPntd02Omq3sd7WvDWXfV1/VYCnRrjWsHpfoC34GPw3aZrOzvkyg3VZcd8z0n0mI1zL5LoN52nE1LRZ2TbXwmuZnZafmak+lno9vdf05efMtL1vZ7El89HYyNI1fb8PfqW8+XQ+EuK1y7DuratotdIVfb7PncxuGx5ECraLLQlT3u/wC24GsabPTlb2IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1tg/St1840HU93TI10ODk2XN5ra9hyerIPVcvL1KoYXVN0ZV919MXXzWLwkVfRaimRrmr6LT6gvPmMjnHGN5lp2t7DXUPo/T3H6IuPndh3QKJFvNG1Xc8lpkVX0Nb/P/mql+kQmqb9D3Hz2u6bHTVb2O9rXhpnbBpUW7Fb02NJi3f0Bb8DcJFQPM1hB6bUVd1/r7h9F3Pzvo9m9kLI9xrGmwse6v0xWdnruH0Q2NM5zdNnxuuIfQze2DZd1b8y0n02PwkfUt58up+i2rmmzzco2yZvOfPVP9Ctsip2jP5b5wpvo+blp+hbf57qiv6y/y6CsabPTlb2IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHB9F3Pzr2916XrO18vMtjzub1PXdZeZVJtKfy3z3UfQe7zaU/lbXvq/mOk+m/TF181p0e311D6MdPPYDVP+obz5jQ4t5riF0kVhJ8Mdg21YclsSZzula3td82vCaNq+3psa53BY8feJVJoKo77h7uuz4qE1zdMVnZ7qs+M9fdepK/rgeQGmfv8At+CxvM9SV3XR+G/Dx3DcNjx+w5nPfN9N9Gvcqi2zP5T5epPp+1Z3LbKm8184030aH1zPpC6+cYmOyE0zxdZdJrSD0uqoHV/Ut58u1dC6akRb3Ozj/QFtwGl63tM3LRtOfy3z/Ud/m5ad72vCahr+u2HL5+sabPTlb2IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlc4m8LXh7VvrRXdM7R1X3NvkVG5LLjwMDHbp2u7DX8PoPpe6+azW2IBFa5XzDSfTPqK7+Ya1h9JquB1QFl31n0Lb/PdG1fc0aLebhseO2BLoNN1/Y7zs+JAAGgKjvdjTedvMqkAHyzQ/UN7W3DRmuRpOs7YC2yajf8AbcDpOs7XX8PoNhTOe3HY8f8AK9F9S9vcPom4+d+XmWpoHWb/ALbgvmik+kxOuYNsWHJbBmc/8zUf0z6jvPmGZnqHQqUe10VVd1sWZz24LHkR0KXGuNG1fc/Qlt8/rOmz03W9iAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1M/LR298jsJHY5edvfAPLzLscHp74eADz8y9PcevnvD0Ds87e+eXmXIed/fLTIqvoO24H5bovp/h5sHD36svvlfzpTfQ67pseffAB08y7PB1egdnnb3zy8y5Dzv755+ZcnLzv751895988/MuQcvO/vnn5l39xA6+e9HvY7PO3vg6ee9XvJ6e49XvXz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ+ca4SKjX0ToOwOpsGXz9JjXeNjtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHU2ZO5mt6LKs6LQ82bP5itaLOrx7Xgt8inuMmo8vMqLFva9psLJurbbJqdWwOo5L/AC+fy89NW0Wl0k0+toPSYmO7qbMnczC6ptOjXNh3V95lUXtlhTo1xUI1xye+WvYEvn53bBhdU3XsToJDLRfJdCAMXHZrmH0e0J/McAw8N9CiXuLjut0ios2+sAGtYXSWnfV5Wemgw+g5L5LoPDzZSYt3sabzkLqmVSPb9TaU/lqlHt65osuC1yKm5yacUuNc1WPa8lm31lukVAGP5s1jB6b29xvsuhsW6tjcJNAh38bhKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6n05d/M9bQ+j1bA6nZ0/mNxWHI6kr+r1VA6rbtjyG0J3M1SPa+2WuwbYHzRSfSr1KpNuWHJfK1F9S2dO5jbNhyegajvoHVP8Ape7+aa5hdHqWv620b6v6HuPn3zrT/QpnZD3dacTXtNhiY7bZvqvn+p7+A0z/AKGufnudloq+i0se6trGiz1hB6jcFjyGfnHm9kSqx7PAx36TrO2+pb35fVdFliY7rLvrILVO+e6f6FuOx4+/zOermizA0jWdrtyw5SW2Q/n2o+gDf9vwODhI0bV9t9JXPzmlRrnUlf1vR79VXvyzUVf12tIXSbZseS2rO5eqaLTuxtW+t1HA6rVdf1e0Z3MbXsOSrGi1GHjt0hWdt9CW/wA+m9kKqaLWe2wczPRoCo7+t6LMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdT6cu/metofR0eLefRlx867e+asgdTQol99K3fzbTld1+tYPTcE1thQ2qbsubze3LDktL13Y7osuM0JU97VI9sNmzuY2vP5T5opfpe6bPi/X3DQtT3v0/efMKTFu9KVnaiZ2QobXN21YclsmbzfzdS/SI3CTkZa8j3XH4SBsWZzu67PjPkyg+rd3mZlp+pL35h88VH0Cqx7bblhyF6l0fzTSfStx2PH2HdXfPVR9CA7vN12fFy2cP5/qe/G/bfgcHCTo2r7b6SufnNLjXOpK/rOp9UXvy7UVf11MjXH0rd/NtOV3X61g9NwbVn8rtiw5T5npPpd9lUWy5vNfMVJ9N5eDaM/l9rTuU+cKb6PD65nr7j9BXHz54+d6f6H2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOp9OXfzPW8PorpJpqxpsrzJpddw+hg9c3e9pw/zBR/TI/CSANlTeb3DZcd18Quub86U30Xz8zHf3H6Wuvmtc1WN2k0vzxT/Q8LDd9L3fzb5/qO9qEe4A4N+23A9XuhKnveQADYkznd12fGfJtB9W7vMvLT9SXvzDz8959d3mqYHT6lr+u3FY8fs6dzQFOjW+gKnvt2WfF7Emc8AKBEv9G1fbfSVz85n90AAaarexwfN287PiPl2i+n4WO4Su2J9NXXzXQtV3U3sh7Lm818xUn03s84N62vC5+cf57p/oXINmTeZ2/Y8h8pUP1bs8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6n05d/M+j3o9+b6X6P9KXXzfXcPoajHt/om4+e/P9T3tQjXA7e49fMtlTeb3FZcdpWt7PbthyNEi3umqzs+QbBmc/u6z4qmxrfQNT32Tlr+obz5dqaB1uroHUcnf3Hz8y3TZ8Xb5FR81Uv0nr5lwenuPTzIbEmc7uuz4z5NoPq3d5l5afqS9+YaOq+1rmmznt1dvW04j5vpvouw5fP2qTU6ZrOz5MTHZCap+67Pi57dXaeruwG4LHj4fVP0bV9t9JXP