Константин Владимирович Ефанов

Теория расчета оболочек сосудов и аппаратов


Скачать книгу

предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEAYABgAAD/4QAiRXhpZgAATU0AKgAAAAgAAQESAAMAAAABAAEAAAAAAAD/2wBDAAIBAQIBAQICAgICAgICAwUDAwMDAwYEBAMFBwYHBwcGBwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCAF3Ai8DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor4guf2kvDeh/twfGT4ua815qmn/DOGw+DngzSNMhFzqWv63cKmqaja2MOQZZ5mk0+EjKog0+Z5GSOOR1Sl76j5Nu2r7KyWrvNxjp1kt9m+V8ra8kuieuuuytFSlr0i/U+36K+XfgB8C9U8JeJdW/aM/aK1jQ7Hx9Hpc4tLKS/UeH/hTopxJLaQTORG07Kitd3zYMrIETZCiqes8F/8FH/hX43+IXhvwuk3xC0PVPGF01loj+JPhx4j8PWWqXCwyT+TDd39jDbvIYopHVBJucIdoNXyu6h9rqlrZu9ldb+bWl7pOSSk5vo5/Z7vTbd+Xz1tZtJ3S92orh/jz+0V4T/Zq8L2OreLLrVIodWv00vT7XStFvda1DUbp0eQQwWdlDNcTP5cUrkRxttSN2OFUkcX4F/4KHfCX4ifDO48Xaf4g1iHR7XxZD4GmXUvDOq6ZfRa1LNDAlk1nc20dyJPMniUny9q5YsQEYrMfefLHV7fNtJfe5RXq0uqHL3UnLS//Bf5Rk/k+zPbKKK5P4VfHPwn8bvh43izwvrVvqvhtbm9tP7QVHihZ7S4ltrgqZFXciywyAOMowXcrMpDGZSUU5S2Q7N7enz7HWUV5za/tbfD28/Zv0z4tr4iVfAGtWFvqWnalJZ3EcmoRXG0Wyw2zRi4klnZ0WKFIzLK8iKiMzqDg/CP9vT4b/Gj4q2/gjTJfG2j+Kr7T59Us9O8U+A9e8LyahbQPEkz251Ozt1n8tpotyxlmUOCQBzWnK+Zwtqr3XXRXenktX5C2jzPbueyUV+NH/BVT9qG6/aY/a1+Mvwxt/hL40+L2ieEdMsvAmjy/wDCC6l4k8IeA9Wu4Bdaj4ivhaW87teQW9zbxWwhjedPIuNphWZmk/TXTf2oPhz8If2ZvA/iSbxpP4q8O6tY2dloWo6ba3Ou6l4rfyQVa2tbSOW5u5mSN5XWGN2VUldgFR2WaTU6Ptul1bzve33qzXR3sm3GSTqRcaqpLV2bfla2nyfMmt1y3atKLfsVFeV/AX9s/wAA/tI+Mdc8OeG7rxPa+IvDtpb39/pPiPwlq/hnUIra4aVIZ1t9StreSSJmhlXzEVlDIQSDxVfxhpfwP/be+CP9r+KtH+HfxN+Huk3t5Os/iLSrbUtKtp7KSe2uLhftSNGPLaOdfOHyldxVirZM1JckeaWi310Vur+QR1dvl87XS+f5anrlFcr8DdT8I618FvCV54Bg0228DXmj2k3h6LTrP7FZx6e0KtbrDBtXyoxEU2ptXaMDAxiq/wAbvj/4V/Z38MW+q+Kr+6t4766WysLOw0261XUtUuGDN5NpZWkctzcyBFeQpDG7LHHI5ARGYaVI8knF6a210fbbv5Cp3kk1+Gp2VFeVfB/9snwf8b/E82k6PpfxQ024t7Z7t5vEnw08SeG7MRoVDf6TqNjBAW+YEIH3EAkAhSRyD/8ABUj4Mxahp6vq3jSPSdW1G30qx8Rv8P8AxCvhi9muJ1gt2i1k2P8AZ0kMsrosc63BhfepVyGBKUW2ord7ed3ZW9Xp6h0cui38uv5an0JRXnvx0/al8Gfs6S6Xb+JLrWp9T1rzDYaToHh/UfEWrXUce3zZksdPgnuTBGXjDzeX5aNLErMDIgbkdO/4KN/B69+CHj/4iXHibUtF8M/Cx2j8WHXPDmqaPqGhMIY5ws1hdW8d2C0c0TIBCfMDjZuPFTzKzl0Su/JLRt9knoVyyuo21e3n6dz3CiuS8c/Hjwb8Mvgve/EXxB4j0vSPA+naaNYuNZuZtlrHaFA6y7u4YFdoGSxYAAkgVy3xA/bV+Hfw28JeFdYvtR17UF8bWa6jomnaH4Z1TXNYv7QxpIbhdOsrea8WFFkiEkjQhI2mjVyrOqly0k4vdWuu172v62dvR9mTF8yTjqndrzStdr0ur+q7nq1FeZ/BD9r/AMAftC+GvFGqeG9U1OKHwVdNZa/ba3oV/oN/o0ogS5xcWl/BBcRgwyJIGaMKytkE81NqP7WfgDSf2Yo/jJda7Jb/AA5m0eLX49Uk066V5LOVVaJ1tvL+0FnDptjEfmMWUBSSBTs/yfyldr70m13s7Bvt5/hv911fsejUV4t8T/2//hv8J/ifqPg2+/4WBrHiTR7S2vdRtPDPw78Q+JRpsdwHMHnyadYzxwu6xuwR2V9oztwQTz3wo/4Kq/Bb403XhIaHqfjxLHx5dRWXh/V9V+HHiTSNG1WeVWMUceoXdhFaFpNjBAZRvbCrliAVH3naOutvne1vW+nqDaUeZ7Wvfyte/pbX0PoqiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorw/xZ/wAFNv2bfAXirUtC139oP4H6Lrei3cthqGn3/jrS7a6sLiJyksMsTzh45EdWVkYAqQQQCKAPcKK+f/8Ah6P8CdZ/5FPx1/wtTy/+Pr/hWWi6h4//ALLz9z7Z/YkF39k8zD+X9o8vzfKl2bvKk2n/AA8z+F1t+81Gz+MHh/T4/mutU134QeLtH0rTYhy9xd3t1psdta28a5eSeeRIokVnd1VSwAPoCivn/wD4exfss/8ARy37P/8A4cPSP/kivUPgp+0L4B/aU8K3Gu/Dnxx4P8f6JaXbWE+oeG9ZttVtYbhUR2haWB3RZAkkbFCcgSKcYYZAOwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDmvjL8VNK+Bvwi8UeNNcmW30XwnpV1rF9If4IYImlf/AMdU1+P37PH7E/xC/ZN+Pn7Gfxm+K3jK+1jxt8SfiRrZ1DRLdni0vw5/b+l6jeNEsWQZbqScgzzybiPLgiXEVupb9RP24P2fda/al+Ddn4F02702z0XWdf0x/FBu5HVrnRoLpLi6togqMGknWJYSGKrslkO7IAOX+3V+y3rX7TOm/ChvDt1o9nqHw5+JOh+M2OoO0ccltaSOtzHGVjkPmmCWQIMAFsAsgJYGH92sqnecIvyhzRdR+kk7N7+5JbN3K2tGVJfyTfrLklGC8mnf/wACT6HL/wDBQY/8Lj+JHwV+CcX7yHx14oTxH4giB/5gmiFL6UMP7kt5/Z8BB4InYVQ+NOov8e/+Cqnwn8BwrHcaL8GdAvfiTritllXULxZdK0lDjjcI21WUA5xsQ46GtP4v/Bf4x+G/25Zfix4B0H4Z+ONNuvBUHhWHT/E/iu98O3GhyLezXNxJA9vpt8syXAa2DhhGym1TBYdKfhL9kz4peEPhz8b/ABfY654Ts/j58bJI3F2Jp5tF8IxQ2y2dnbW8hhE1ytpF5k29oovtE8jkpAr4SacmoKaWqc5NbXl8EEnutFCon8KcXrrrU0nNwvZNRin05XaU2185U2t2mmk0tOM8X/HjS9Z+JXxa/aa1xluPhj+zjoOraD4QOf3ep6nCG/tq+j9SJYY9Oibruiu8ZWQE+HfCrwx4u+D/AIg/Zk+HL/Djxl8UPEfgnTL740/Eiw8OXWlQ3MfiLV3uVtmmOpXtpEyLc3WpsoEjODaQkJgZH1d8df8Agn6vir9lH4W/BHwbcafpvw98L6/obeJItQmka41XRtOlF1JACqN5s9zcQQCUyFQyyTsWLYDYPg/4V/tG/B79pf4y+NNJ8C/BPxhF8RtZtpNNvdT+JGp6PdWWlWdqlvaWjwR6DcqCrfaJm2zMN904HTJqFoS0d1Hbz5feuu3NOamk3p7Kya0Jk3KF7W5t1fbm91JrZuNOMotrf2vM1qyL43f8FIf+Eg/Yl+OOueF/DviTwf8AE7wDcN4Mj8PeIhafbLPxDew266bH5lncXNtKJHv7RgYpn+8Q21gQMj9qj4cx/sdf8EqvBvwD8I3klprXjOHR/hDo11ET53nagVtry9B6747b7bdk9cxE+9JrH/BOfx74G+C/glfD+peEfHXjqx+KcnxW8Y2+u3lxoWk+KtQlW5YRpNFb3ktvFazSWjQK0Uvy2MSsQfmGF8SLr43fED/gqB+zHF8Rvh/8NNP8P6PF4m1W3svDfjq/1uW0uEsoYP7VnE+j2iBIFuDbIgbJk1INuATBcKcZfuppe84Ka+y1CClJJvpJyqxTXTlb2bTlOUHz02/dU3F9U5SajdLW8VGEn6yS13uftafFbwj8N/22/gH8MZdH8aXHgv4P6NN41urLwt4M1jxN9lnWFtL0aGWLTbW4eJArahKrSKq7rRMEkVc0r4z2/wAQv2v/AIgftEa54e8XeHfhT8CvhrNpui3vinwtqXh26vru5kN9q08NtqEME/lxwWVjCHMeGZpQpPzV2kXwh+OnwV/ar+Lfjbwb4T+E/j7TfiVdabNbXfiHx1qHh2/0q2tLGO3Wx8mHR71HjWb7TMriVSTdOCgxk9T+2H8CviD+1p+xDqHhE2/g/wAP+NtXawub/Sjq9ze6Herb3sNxPpz3v2WKfyLiKJoWmFqGUSk+U2MGJSnKHtOb3/efN1Uppxba+04xfK7Xvypq+l3GMIz9nb3LRVr/AGYNSsn0vJN67KTT628RTxT4k/Yf/wCCMGs+LLq3/wCLueP7OfWPsz/M83irxHdf6PbkdWEd1ewxY7RwegrT/Yv+Btjof7XWkeE9NWOXwr+yb8ONN8B2DJny5db1CGGe+k7/ALxLO3sskkn/AE2TPU13WufAD4tftW/FT4c3nxb0X4c+B/Bvwx15PFkGkeFvFN54km8R6lFFJHZieS402wW3gt2labaqzNLIsJzEIj5nO/Cr4KftKfs9f8LM0XwzoPwU1mPx34x1jxHb+M9U8Yalb6hbreyn7PJPpSaU8cz2kAhiES30ayrbIPMi3Fl05lGcpwja6fKk9LRXJCN3otKlXd2soPdaZ8rlTjGcru65nqneT5py0u3rThtd+/NdzzWT9oi/0rTv2wP2jNMjjvNQ/tCD4TfDlTkm8m052solQ9Cs2u390uVHIiU84GO4/at+EEf7P3/BM3wL+zh4fuGk1T4jDS/hVBPn97PHdLjVbw9ywso7+cn+8Petjxd/wTx174W/srfAvwH8M7jQ/FD/AAX8SWfiK7sfFeoy6Vb+MZ4Y7lnmuLq3trl4Zfttwt6CIJA0kQU4B3ja8M/A34zfGv8AbP8AAPxE+K2i/Dfwl4Y+GGj6qNH0jwx4vvvEE19q18IYPtczT6ZYrGkVqtzGqjeS1wTxiiFOP8J6q8U+0owjdvXb2knUTSW8lfbSpVJKXtY3TtJrvGUnyxTte/s4xg029rpM+lvDugWfhPw/Y6Xp9vHa6fptvHaW0EYwsMUahUUD0CgD8K+bfCR/4X//AMFTfE2r/wCu0P4B+F4vDloc5T+29X8u7vD6b4rGCwXPUC8cdzX09XyL8EvhR+0Z+y9qvxCs9C8E/BTx5Z+L/GureKk13VPiJqehahdx3c26COe1j0O7RHggWG3BSdlKQIcLyKlTbr88+0mnveTtGz9Yyk9eqTWoezUaPJDvFW2sleV184xi12k+hof8FjPiwPA37Gl14VgbXP7S+Lmq2ngWFdF0u71TUUtrxj/aE0FtaRyXErxafHeSgRRs2YxxXC/G3x/p/wC2n4k+CPwg+H/gf4mWvgjS/Fun6/4ruvEfw31/wzpun6Toym7trYS6lZ26SPLexWKCONmOxJMrtBr1L9pb4K/Fnxf8c/g58SvCmh/DvX9R8A6dqsd/4Z13xTeaVY29/fQ20YvLa9h025eVoY0uoQJLaPcl0zfIcrXq3wc1r4m+JvD+qf8ACxPC/gfwbqQbZYDw14quvEUUiFTmSRrjTrEowbGFCuCOdw6UoXhee8oyUrLR3g1yK+0ldOSt0m02tbFS00orROLj/wCB3Un3i7WXrFPtf59/at/batfC/wC0bf8Aw1+AXgbQPid+1BqGlW9nf3UkHl6T4J09nkkt5tf1GNd8VuheaaOyRjPKW+RE85ZD4V+0n/wT4k8T+D/A/wCzf4u8aar8QPFH7SnjGbxr8XvEcgFjNqen6VZRM6W8UOBbWi3Eek20UQY7EJ+ZmZjXqX7KH7KH7RH7MP7Psnwv8P6L8EfCt7q091c638U7TxLf6rrmq6hOxM2uTaTPpUcU99L8p8ua/eOM7BuljiETe8+Av2ctdsf20vFXxQ8RalY6lZr4V07wl4WRXLXVvAsklzqE84EaRpJcTmAYjyuy1jPy52hRowaSlqur1W3vpRWjUedRcua0pXbeyjGpVJJycNGtvnaLbe3MouTjbSNkt/el+WfxW/4J9/GX4m/s2fs6/s//ALQmuBoV8Y2PgXwp4X0bUN8OqaTpc011d+I9UeNj5kh0u0EEFsWKQfaFeTM0myH66+BX7Yfgux/bg+OnjjVtD+Kl7baXdWnw38MS+Hfhd4m8Q6eun6UHN20Vzp9hPb5bUZ7qNlWTcPsceQMCvo3xN+zPrHjf9u/SfijqV5pa6H4M8FXeg+GoUkkkurfUb+5R726kjKCNVENraRoVdmbfMCFGN3mP7H