Юрий Бондарев

Бермудский треугольник


Скачать книгу

картами или другим удобным Вам способом.

iVBORw0KGgoAAAANSUhEUgAAAb8AAALqCAMAAACSZqqZAAAABGdBTUEAAK/INwWK6QAAABl0RVh0U29mdHdhcmUAQWRvYmUgSW1hZ2VSZWFkeXHJZTwAAABgUExURZ2eos/Q0k1NT////2pqbC8tLufm6K2ustvc3jw7PVZWWMDBxXN0do6Pk+rq7N/f4T8/QOHh4/Ly8l5eYGNjZUFBQoSFiEZGSDY1N7m6vvf399bX2ePj5e7u7nx9f8fIyvgvFJ0AAQFbSURBVHja1F2JYtrIshUa2SAhjIhWBiz+/y+faq9utYBkMpn7uHdih+AFHVV1LadOZYV/dEXXFfwfPsJ/3Xi0+EfbLp+0LX3qHxX9WVUt/R8/hT/ix/pJ/23Wv8/rRxf83gX9nh3/OutHni//t0eVJ18V/EIvfqN6+19q/qNe/vSPeV7+v3qknhvmbJf5Xzgf4UF/Lh/5uTz9GIN/46+QP+Rv/Ay9Qv4MX/T8EV629b3D+GzeW3qPuRvLwVXl7z0C/Pi3kTvX/TKGKH+mv99bD0Az/cB/CNDHZ4dr5q++XNTEI5c/8qcvW33Nu68Nvm7r0oV3ftINrDEzfxAbXvqW9PfcUxif/DIbvsoB+wJIgoeh27Brxs9fuX7s+3750OPnbz16+gr+aM/y9+P/+tX3o5/Tv4lj4sKRy167aw9WwoknwBvz9M1rt/WmQ3A/Se6Vru1+9kFH1k8+xP7wyvOj4f/Kph/LpmlGush6+ZveYG7oC5qmbOClDf6JTzTLKxr5VsvTPf17w6/r+T96OX+Gf+OHxzUNoV0+OjbtM/t7mzpoY4NL3Y7RrahYbp2Mr28e/wzdbyl3sWWXnUYf9hc2QsWPr29Z4kXGj/ihxCtdytUu+SLTv5X0Z8l/s8fywqn0r3AP/rb6V3tevxv8QETfjHYbxncfdNkj5Njb6K3b6Nsd3V3rHIL9Jhs/RiO19bOt3VgpyENAn0WMZq7DMcv7Ri+dXHV/Yf0Fbvx1lsc0yUd56Hea6NnoO/uX+2+wevSBIWyfRFW1/deN2IseDZk/3pV638I7bvRZciT9G279Zx9bML7hbvUsnY/Z2LtrWvJFles6EQKpa694T/yitx6vX+nvieUi9v4sDoN7Ch83I8jqCXBsc+6eXN2ufMv25HzUs6fD5ir/JzhWbQxnGJKpbQb4In7XBT/0donLiPhNAtakV5VfQP+VYxqRj+nXH94k+TRVECMjfB71j4mTjsKpBrCIvY68UfMKDldGcStKdr8S/1aV3UeWrPyiVSYtVPDDX/KnLvCHQ6dXwD7gH/wDX8ef0Af3HT4+7PUrwPGpwPQ55Fn7Mf2U4/50IOtiEzI2BOaJOzAfU05NZJJ2MOb/4JHw+3ElQ0LmNkC209IB4Veu38UHXeINS/rw+JWGz5uPrVfbzw5/ANtHUzo/9tMPDpZ7tag3nX5pDmFyprhxMGsavXIB4/v1gaeu1qedRQv4NWv8Pj4mZ0sxiO75f4TXGr/YdoMfa25McQwCyDBnRVMTm0NX2egpN5XlTzqcIC7r1Qz7d+sRBvRTs33rGDUAEb/e46egTOFVn15e798FYtIkVyCWltToQ57jKMQ/3URRb/JI4HcU3jUfq5jAn8xNkGMwnj376RclkNQhLadmHEOnQVziGcQvMsA1ev/hY1JL/JjCYCrKXuIMZR0zx+9Sj+3I8KfgZktHY/z9g6pDz583ffCAZ0fnKaw49aJu6GK0DSvs2nqfcRhmN9wvG8u/jWMYGgdA+RRHk0p54WRp0eqIf3oG2Dm8cubw3Rrv0DmVlMJSWFdSf6/u/s3ar/nVGETEr1rj978H3Qq/SXNO7xYVOkNYXjP5VCjE8OmtOrlDYgu/MoDJ8LNPsDZgZunx698CsEqGOJH9lf8afL/le07J/DRduFEDdTimYrSXbkbxW4ekWmHoqbrLJciSjZA9Z6+maP503D4Xk0HqkyiG8Bt7l//9o2jj38JviuxvSpT5Vqm4jzNj/NSa3o+74pRiClLCMGIqzfCkrsohTeg4+/616+TcP3+CX5C//zu+7/f6z82C6dNHqkD09i8foJ74FRxq/shjy2Tnqf2bNH7jT+LXbdjfNP3uq/878YuN6xVqqeDz2WG/qiGxB/2Ig1CFTWxQTU8bOtY4o27K2LgSquHn88N19TYNoOKXj6XLIOKA7H8ooNkqjEwBWlpzDwrhgeeTGo8egr68t0og5ByMQ2Bz370B6NJTBNO1OdUGRwtEU5n+W8cfZ/AV4gd2ze/x4381BE2Ef9MLb8k1siBGDSuAEVRT2uGsvsaFL2WvODbiRMsgi1jlhc9ywCeltTyFH9kffDeGT2/C/+n8IbyE247Td7ki//mxffxNG7dP7AIC/Kw8F9WFfCLvY9BkfWazo5GmkPD5B4FrU9r7+X9hf649EB+C7h+CMzLC76eKglPYPrEDsAySwCAnJFvUxK9pmJoR1m0DstdWASZNvTH7G/n9/c8C6GteZToG9V28xhVilLOhX0tnntnUu284cQLLecf9LcwIfTxqnCKFr5FDcF2G2fKfqzqa4pdlBL0egHYLTv+r9rc2uellACrmVwbVzA93DmqWsGGQ2xmE5nyU0I+EleQQ6jbDHL4f3629bAcwgt8Y4vc/Zn9h5GD4NYka9oorpRFFMoFY47ddbZjknxNBqBGDFtDG3gpoih9yCJzr/IniZ/4Kv54CGDrxn1VA/lP4Yg4N4Df5WNNKkj6ikHAi2T1K/Kht+Ka4J2kGbhYYFD65BDNS/6FxMaijxb6BX74RgCJ+mD/kPQUw04b5/XcWGZSPP9IVmLhzJP0+4ij5pm8Z0j9SXI9UDh/0rFfnX2mJnmtK9EpvNSc6RnXQ9wJQPgIjDA0/il+eZn7/NX7T9PEq/XP2wOFK2SBTia4uHU1l0M5bB5gvPUHsx43q2Ah0RmeWHpLREMUGI4r6O92HPFn/ZPwavp0+/lcf6/pnitToKcITAoYnO15IZLKVm+5zejOKWvtPzflcGabxsaf1IJrG256NKrxs/62PQcNvcaAG3z8nSvx7x2AawKAV3zB3QvKGHqvzdueXGkJ+hMXCaZreOOOnVAVUf6ZYOpNtuPPeI4UUsRs9jXRF03+VACb7f6fF/pqmXFPPzO//b6C3jmBKq66IwXkyP7vMPmdXBUXiqIPrA5qPJ5nTqiQcVbClBNpr9q7tJOkDCm7uc8dHdUNdTw7ARASD+PVBbTBiZf4POdCPFMFXbn9jGbItSjFZCXzkZoLvQBaC7ZeY9TO9Z35xvOsNMiBSSBLP+I1yBjKUeb4ekkmk8Cv/SfhNIbngf7H5sNX+swtlDYHG22FPl4QimeBq47/wXMvYWAS34XSmqI9cRj6c/bYbAzLk4h48+HUlN4YN+HGLw7SB3zha98/aSG+c6tMfPCWj7lt031PJo/TxA6LVczRINsbDDHSz9wBexbMgMEmwQDiWjqm0fo8REa1csQkZw17yCXadI+WAShjtPY//rfQhxUEj/IoTz6/4/phVa33h/V9usP9k2BCn6UqvBoOjy5Iv7w9is5L4e3QBkLZczzhmPgynU5ZlJ/xz+TDMiCOgO8X5/LR1CPvmgxHzrWimObxx0MZ+i7g05pv2lyaAAn6jnzvyvRXpZ65ta/rD+H08wa/xEQK+WXhfi03VC0D1ggi+UxlJnhE6Ri7bhw8CEb8mb3wsIyXv7VupKTWCacoy1UIKekl9sgmYb9ngOntn/MB/Uull+dWCHnzUmv5vORXJixZT6QE5nEpd4FnwAbNa4BhYqmFYPsUHKDmQye331+PxccTHVRFcXgD22VbkTrkjP2n9c/NOaoIIVKdQtQLDscsY1rLfqYFWrgSzsj8ccQ6j6fVRNiVKkn82dZfWUcJvcgDXFvWQZWRW1+UBaIQPBBUMcABolyeux8cOHg/EL0P8FvuDfx/qLucbm2ufSfCacNC1iTi9QkKzIHQc1734zTFtsb0EfoDgcv4NYn8BQ8T7zE2OT4It86+XXoxz0ssMEB5tYHSnDOzpuCAnFgXWNIg1GoJ83qH7XBBkCPf4dwCwqIoZ7BRimq05CDv7mtEzCHsKczVn1+KBoDk+6QE+HVRK2F+L+I1NmZzl2AYnyBCnP+o+3Wi1hilod4AFAyf48XHG7tMDBzbKX/GABwJ4BfiXrzrV4Ia7FmkLTemaftoEDDqQ3u7igc/Vw7XiSeQhpNM/HTRbiSaQ/Qn5JTVEls4LovGOPwJgGQ4g8XsGrzmj4SEOjN9V3OcC31xzrDkogBa3GH43QBC/xQIgpxMQDWFlePr42Jz0DuNPJ88Q8GBK60cIp3dkOmHoQ/PxGX75Cr/ZnX+Rq/jYbif90dooXavl3XPHRiM5iFiWN0AukAFA/CgSWayvJp0UNL9hkKiTMUQc+QCEx+12uN1uAOAStmJVCpLFpiyTQ6xlJL0h/AkbqJf+u0wflr4Qa7Is2+IIz1u5FL/MOD+2/Hpl02w0N//zIgxdr36k1lBDHGYINsHyHAAA4FEsD0NPOMLgPXcYk+LDIXgCPBHC2w0BPJzPh9viR8HrLu5zXL4YLjbcNh/T1ihi4zr9fVOGCh1Sf5HPPCPNzsD3kvh1AY3sDxvZKfym/40imlwtDgx6rHu1ECMCeo8APbY+ygKWB5xilBIWqPc2I4AUquwld5cgZjHAxQLhIFy+vi7advkv5+batMVedPbW9IpfExcWQiohtSXCPuCv47c9Ufw/UQMN5rXwzS6mN5z4zAPYvPEhfBlk4aSQ0kr/ExJDimQIP0kwTmiEVwQQ8FsAhBsA8ox5CUXhcpapOeoVfn3v8DPJo0ZVqawN33tNq/6tMZZ0/XrBTznfLgO0wsvH9DR/+MOhJ7rOvFviTczcHhy0yMcgCYe6CyBIAGL9rJtn9aGcu1/RWJdnruhGAT66EdAD1wt+i+02aXUi33OAst3Yl40FpE7PKZwja2x2nv3o2P8ifp3gl1AQ0ZmN9wgq/x6Ajc3aLabX1Sc4sgAvhOyqtS9O7zLMwaGGUnQdmBwegmKEMx6MbHNkwHDgcTlmgfCAAOKzkMPDlVpA9NF5TJLqpd0+NoGSWOOOvVKCGcoaAj69n2BRJZTXRDSyv5r0C5omOWH1RnrwL1shXC6Fr+o4WcCq10Pwk2gEkwU0sdo0GAlAtcG2mDWTwG8E3+W6p9R9OU8plEG3vMCKtdCu6PJghDeiLHrumRIJ0ddzIyTg8Cp+oyuh9c9nWF7i13iC5HpU4EVj59/OHDC4Wt5mBafe/igPdZmM3wIeNYNqiD0W51nPA6nU1i01QEct1bCh7q9a/cT7IMgnHkfOH5dscFT+b7ka/Q3HNk1qSJMIE2P0/nPcKoH+JH4gnsV1c8KrKV+jN/3L/nNyjDMW0crb5dRjmzui5Ui2Lh4U+z8iIQkfugWpAfCDUEYQhIINnIDoR7M9fTUgh/fCdYlrJB7CYgycgov9juvJNdNR1FlpYsHYmecPP8UziEL7fnybwJRHomlw/tUZ3FCcQwTkBKwTTf8da3dS+JoeDy48r9j02O8xdlyyxrC/FghRYQrc6QIhuM2Ze3tohFBxgxfPQ6anJ+L2QF8KwYzmkqcBvtC1SMOxtCaAp8E8JxCn6VWapu+jafhxbX/5+EyKL9BwJvwodPI9+MZ0H6f/IGaZPN+shDYsFTivj+ghyZ6kcXQK1qFIcb1ELEOB+R8WpOkigSsGy8JWBKAP/Yg9Aki3A1bC9/TtT/iFzYrz6XnzPat78dGn9ZdGRyG8wsjYx6NIz51nteritlx/qSF/N/6u4vdfi4nw0QfxJrm5o+Fm2TrYXCZdPu6mU+bOf0D0sTy/2F4H3dxK4zz0rQjgTFWYbOBizhGxzOhIpNtjQADLlfSMkM8cX9Djp8Pv6kn7VSK/qqBta2GGp5/ih6J+TSD7p9HWf6blw72+vMDEDJASp+njC4k+IdlevGOLFTUMOsCqsFkLOcRAbYjlAySDUvIAlwyv7Vo+DyExJLvLtNK9Z6teEvm835KcJc6n+cxI0aA3D9uPvqXUr/sPz9K/5ATLYn/wLafSAyiO4j/lWpd9XmCeLn0FjDh9sZPy9YzbfDUdCZjhnbjOiSk4mRg+BUC2hCAERAW8aF6iE/DQywsKTE/wJDUI6dPFBed07gVG2JjMq/QferM8nUHqo3imVwnSfqXt/gS/RP9I8OO76sM1t97wn/+Ch2XH3VCUeJWDTuIWV+x8aL3lhHkCJttQqxa09hkHKWCOJ2k/kDPE9kVVLy9abAvpMZA2QkEDvpCLOMrB4FLMelqt8Vp6JkDhyINK4fUK29YDDEn0L5oP6xFqxA/HcmT+Vu3v+fkXEJan341fQ7neVa2Pe7LHY3D6SeS4QLBc/5mLnW2NRZaZcRCeGTWQ8KSr25xU25c4dC8hD1jgkjcu+SHZIH4Fmh6erXB70JjkisMhrSFqEvXWx3XHHnKvYyZo3H5IrEXZVtAiWlad8fiKmh91S56Z30pmd/rN8OXAS5V2OvVj9/on2aFr8sGFhqQBjAhzBI5NsKhJKZxUaIhkAYWVxZqWa1fm7cxBawtcrgzOuaqd6VXEtljuC6j7QEW8rcYmmlmTXL20HL4M2+3+s95ngGkJpndPwFbiF5r9k+n3V+IM/342MS1WcSIGknbSr8Fjzy0ioZMNePwVWKpcEIRCdUFVlj2AoA13aEvMSyqCzw4YkkBRB9lMMwOYDYhgUdvhN9f0nWuswzXu1POi/NTbKkuX4bGgQePmAz2OXo9CeL2vhHpX8UvB/OsQv/8oekG/jSZBqDlqJtvd43hUbsQsm2WwL4S9voqYK9R4mKHaxuYnByWUYtCxUmgD0WiOJVGkfc6YgNQdXCeIg9howfByiHHgJ4yNq3h6xlmp8360JkPWavSl/YvHrw/5c+8QKMI5XI4/kf/SRIOpfx4/LriUEHSG0BF+CJ/2aK946HVcRCKSBFGOOqyCgiMlOOD8U77LcvRBgHMiFhMGlWNDCCJONUCeYb0F4yfynzUCDWz75Yrlo81Hh9pnpV8jUbo+e2lqoCHbOLkiZIsCygr2kQetkX+Ng6l2Gd+KPf8V/Pp2yBS8wATVe2rRBa0J6oCwGGF5N5CxQwDToe0tfnABCiN/YLky6+wE7jGvZiGiLX/PQVQO+/kYq5JxzgV2m+BJgJVKbznkJxUkglySDQholqe7frxOXljtjBYMha4z2Po2PtmQEPM/Kf/rZTBc6HH/QeUFfmJZ1Ry771MPRx2DkGOmi1vQQb5ACDUyjF/IdBavV8AJiaZIXVuACCCuak4v0IxbOAfR3pbzUY5LcqMQt2AHAjsYSPGGIAaNbcx76xU1voFU+pHb3gU0fghJ5Qxe8K89gnEGz/WXnllydgT+F2ffx1TNmeGkLE36dM/xPIMI3rOmc6uj+YYC/pzhqi9vE2CAxJxmIMBn1jUlA4QfVWrkTsA5FyjIUBUOW4PkayFsgcMVG1IygyfctHxsyjj/W2mAhqqSnGi4lqByCXXHzGpHSbWdwndQvxZdBie18p/ELv2c7T3r/eRY71LZ5NbdHuJErI1S2gfRxWJni8er8d0uEewSiFQjuEXKCaiSDdZGlLQWjsUrZQkQiy4eDRwmcWSgFLr8C3xHcKL4MxYjrzA6BAAZv94ngRKQjL1n0Uvs2ffeRF302bg1XfkWg94LYQcKTIifRC//WdEafnaT15kyivQhTXWsdOEWSuRGgC/s4K3UmJhh6Lm8sM2Xd4S13hk842KL3Qz2BdEHRKZUZKlomAcShv1jd8VCC+T0DTSqOs7lM4pXO+wizhTcwmk7Qt0mZ3Jo79ewCSyNjlJb8VM8rA2y6DTEkxJopeMPti9ULVDxaxomif9X0+74Y8du5mG8QamaEHwIAxcK0sgpWxIFLHMxEl1BFIkWSJ5Uy2xzwA0cYwUnGLTjcxzWbMEfkjckX7j8zD3Wqwd0ksD2xMuD9VC6fzCaRdumiIHjQ+oZNU0fcj1dYOqMsnQrzTjR6Es3FxhLiawd59b2yCX/wztG1HE+/ov9ATi71vL55B6EH1EiqNvDe+8wVkEg6GLrIQeOsKIaDEQjgF9VCAmNFyfXhGBFfBjIVo57YjxRYXSkQBM9KUydQWkGoMe7H4HHLLvnjkLj1D/DxGLlL5tGtin2Yy/UGN+Dj/FLOdC4gJaV3Hv/ULbZVDZ/mGP28TGCa3OmN3DxkW59CLQQJAy5MB9bXCeYIFoWYtVB7pctgf9yselJaklgTwISveXfEcaixmNQW/GLEz1mA9YBFgRpkpBmCdFT48/AqGXkW0B3PzauCOOzPLdDcLVeQPIICVKTHND3WkjSf7cxt/9sxKFvZSw2sMETT+whhsXAFZeOrjSSKujqtjDv1WLcMnSiNwHJNh0abQ1H4wipIRShF8jQliuKFqridD0e9xCZIvWp4jHY5SdSVbUwaQ/aCJarfnUzSQ/C7w01UdCgHCoruJRuEUoqP6FQVBsCFGR/ffn72wg/UTCDImRLXL9BjRD/lHge22+AAoYyNaStyz8CpvwRzjX4BCCd128cOGcA4IjZG9gcuEaISyk4wC7xcgoyf63LkaOPJBP1mdRw4h1g2sbvXf6OqyCYuFs2AXgbttgYh2nVABy3ItCU//yvWrXU6OsoBiF2u7M8jD1nbv7wBnR4IRx/MwIHvSKkh6EtLr4TytF8QkkcjiAhFR4ArCoeGcQJTZltxaI2zK0s5gdUtSWx69Vp4mvQRKiMhesy5WI3690Bpc1CJAQJHZ3e1T/X0ef4VgEb8HPu8z+Ya89x1pV4mrMaoKYP1H09UR8AatQFFTrhkkORC5BkAJcAtcUqZcV73N0lWMwTDLDPGRJM4KmYhnHo8u9QYt1nM9TjWtDkH1EWhpUrMGApKbThPAIjnbF3Oj2W8pXGJiQNwt54aF4VVKarXQ8+35Kwkywizv/K/5ApsWR9raR0yFJR5GYmsZy4SXTi6hdfQcRkCV9ydIbUea9P2YCnXeV1HNgIC4wu85FOMHgBdhgwcacnyQav2dyJ3g+p3zW9WETPKiTgMVr+1r0NavZ+oKyReammCRkVq3ncRrez9Jv8wdD4cjf/B/zP/5DpUmK1mQ4/GbHUCQYSiiA4+SBkiyE1sOVLW8YGjihAYAli8NSiAERJ1zhBZqNkRY71MsjtwQujWUJci1k7pB0VA0jik8FueOoDcAKZU63F8GucpLmPY5o+4UatLBNMwm/2cBMLPMB//nc8wWmsCD3ynydTGtDJWcEN8AQyyoAFTvQoo1zGxRcWRJyAmlnO9oVGpYRPDeEQdtTLGpkEWrTwYhRhqmfuWNAtIF3Znhbv5nIGkpELgKX3m24jUx9m8kn0wpHON3S0Iv78f4tfj/Gjhi0iDgF/YNUDW3nUXV2iRRrZzJYEQY6kccQABICAJ8d2gIIX4YMnIR6FAqAUgFuo0MBlH3P8jqe5xep1QR38eZDO7iiqgqQESdYG34PdqLhZYZ6VnlMvLfeoNhPsGlCTHBP4vcGfaAP8/jTbc2owgRs0SThlWvQckAZf0AQthqeQjXPrvMhx9L3Fagm5Ggj64dMZyA5dMTOCrQ09EOB8EZYv7YHAAuVRoFVALgj2Sr1AiFZrShpUTY03mOPP4zI23Q5ERtySTw+09NxWx1Jim0aFmUbnPvPx1QhLW6Xx+0PlTpzro+ifi5vacrCqNZYrOXfHLhz0ZbNsD40FTAK6Sr0j+cxx8YAF9gw6a/aY/XEsQ44Vqk5jjlVXOG07MmW8kngYAlvJ0Y+aJhD54BpNp4WY1Ta7xmlbNgHVKWg2mUD9e1Ku6/z9D+MnP6akLIw