Лиза Заикина

Научные исследования


Скачать книгу

при увеличении точек Х1 увеличивается и сама плоскость.

      Пример. Андрей на уроках труда вырезал из квадрата треугольник. Сколько треугольников у него получилось?

      Решение: Квадрат Х=4, треугольник Х=3, то 4-1=3, где 1 – это прямая, которая имеет 2 конечные точки. Тогда 4 (квадрат) – 2 (прямая) = 2 (два треугольника)

      Ответ: На уроках труда Андрей вырезал из квадрата два треугольника.

      Теорема 2. Любые противоположности имеют две плоскости A и B, сменить значение которых может сила S.

      А||B, но А=В*S или А*S=B или А*S=b*S

      Доказательство:

      Пусть А – плоскость дна куба, В – плоскость крышки куба, А||В не пересекаются.

      Если сила S имеет возможность реагировать на силу А или силу В, то в любой момент А и В могут стать одной плоскостью. Допустим S – удар по крышки куба, тогда крышка упадет на дно куба и A=B*S.

      Пример. Рабочий на стройке нес кирпич, который выпал из рук и раскололся. На какие фигуры раскололся кирпич?

      Решение: Кирпич имел две плоскости А и В. В результате падения на него подействовала сила S согласно формуле А*S=B или А*S=b*S. Таким образом, кирпич разбился на новые плоскости.

      Ответ: Кирпич раскололся на новые плоскости.

      Теорема 3. Треугольник Х3 всегда может превратиться в круг Хn, потом вернуться в свою первоначальную форму Х3, пока для этого будут условия. Также происходит и с другими фигурами.

      Хi+1=Хn и Хn=Хn-i, где i – значение фигуры

      Доказательство:

      Если треугольник – Х3, а круг – Хn, то Хn-1 – это прямая, Хn-3 – это треугольник. И обратно треугольник Хn+3= Хn, где Хn – круг.

      Пример. Марина вырезала из круга треугольник, а потом из треугольника круг. Сколько треугольников получилось у Марины?

      Решение: Хn-3=Х3=Хn+3=Хn, где Хn-это круг.

      Ответ: У Марины получился круг.

      Теорема 4. Параллельные линии представляют собой прямые. Как только одна прямая Х1 длиннее другой Х2, то параллельность линий сменяется одной прямой линией Х1.

      Х1>Х2=Х1

      Доказательство:

      Одна прямая имеет точки Х1 и У1, вторая – Х2 и Y2. Если Х1>Х2, а У1>Y2, то получается что Х1У1>Х2У2, а значит Х1Y1 – образует линию длиннее Х2У2 и представляет собой одну прямую с точками точки Х1 и У1.

      Пример. Три мальчика ехали на самокате по дороге. Первого позвала домой мама, второй остановился и всех дальше проехал третий мальчик. Где разминулись параллельные траектории мальчиков?

      Решение: Представим траекторию каждого мальчика согласно условию, получим Х1У1<Х2У2<Х3У3, то есть параллельные траектории разминулись, когда Х1У1<Х2У2.

      Ответ: Параллельные траектории мальчиков, которые ехали на самокате по дороге, разминулись уже тогда, когда первого мальчика позвала домой мама.

      Теорема 5. Поместить одну фигуру Мn-1 в другую Мn можно до бесконечности. Только фигуры должны быть с каждым разом меньше, то есть Мn-1<Мn. Но любая фигура Mn, превышающая предыдущую Mn-1, может быть уменьшена.

      Мn-1<Мn<Мn-1

      Доказательство:

      Представим квадрат в виде М4, в квадрат поместили круг Мn, чтобы в круг поместить вновь квадрат М4, он должен представлять собой величину M4<Мn<М4.

      Пример.