В. Н. Сафронов

Мультипериодический закон эволюции


Скачать книгу

отражает относительную частоту периода всего ряда данных.

      Второй столбик отражает частоту периода, выраженного в миллиметрах диаметра или в сантиметрах окружности дерева, на основании первого столбика. Третий столбец отражает примерный календарный период, рассчитанный на основании второго столбика и таблиц хода роста по конкретной древесной породе [17]. Достоверные значения выявленных гармоник цикличности обозначены серым.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

iVBORw0KGgoAAAANSUhEUgAAAtYAAAFACAYAAACYxzsFAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgAElEQVR42uy96ZIjSZImpnB3wHHGlVlnHzOzs7L/+AyTZ1U3yQfidndlIK48qruHQwplhe+y25VR1dO7woehUHamqyozIwCwbFO/sc8UDgSARETAEaoiLgAc7nYfn32mpiri4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLi4uLicnck++nKzeXich0S2lZT21ypl4uLi4uLi4uLA2sXFwfWLi4uLi4uLi5Rip+uhoKdILsVQPuqK7viXjbjucxcs8LIrrifXZGObIV8zAtzXhzZnPQuU55ZRbj5B15V5ZWtkN98yXLiZ4L09LPh3c/FxcXFxcVlmySAnZYC7MAgdr1IXK5xEdcicN3yInFxcXFxcXHZNrDDIDvIqkz1PPZzVSY3k6tZ0GzBZ5fJx1Vs+qIs7apluCgzvmhaF2XIF83/PIZ+Hvvf0wVcaHcd734uLi4uLi4u2yQB7LTlPXsYvv/+p2vol1/XcB39dH3103Wsv/9n734uLi4uLi4u2yRQAcH38U/XZMnrqncu9PNHc/8tvT+mcEYV4Y+WSM/IhDu5hmt8xf3RjGcuPyDOyyXKfJEyGlP9jCvSPytfkyXrY1Z7GHr3c3FxcXFxcdkmySXqvobDZH39xMXqAI2KixnvjkR9bbYAMdBn72uc+L2jzzf1+bbGD/3bksJrVaRn1lVIan3irYI4zkdmwpuX34zCKzSdTc1Llz6Rly6lu6lpGEhUgUB4zYp0zEpLpnkYU3nYvDSuKKMm1XlLy7qp4Q00X1DVQNk1JKpstPR/qHQUM+JpzEgP4i81H0fe/VxcXFxcXFy2SQCgRIHuvRWAeZPAmijgAkAPYO1zjWfvp2tfn9ml+NuUhvD9Iwr/Ht1fVO5pmgYKcgM7+psPLKeGpIc725oHWFVp0qIBZQndYpZd+l4smYYjzQvX1zLSpkVAKVHvuU95RJ20TN5FojWPvRXT39SwWpqPl979XFxcXFxcXLYNWOcEDNtSzUDOYiVzAtD4bNL3lkT2ViQyzyX9BsMNgN0k4NcyIPAqhjQj8AaG+VJBaeOKPM0KL6P8FQZktqkcwr2OxF0ABq62nMBuV5XzLPb5RN4zvRxnVpH3WRfKE/XdpTrYpwVRi4DwQFKWvq3v9yU11TgvHRmBdcQf8jH07ufi4uLi4uKybVIQYFzWaUcATJ/qZ5cAJ/RyLw0AO5VUPzjX9wLI+ivd7xHoX5YZ7Uq0cNKU9ejzAihDP/it3gd4PJRU9xhM9VBS/WKwwzsrpAFhNQjULyN9ei+E804/DyWq7IikutAfSWTkWTf+U1qMLSo9KsuxtgUXFxcXFxcXl62RjABiJss77QggrSNRHeREwddTAmkjAlPf6XPHBHjD/9/q/SO6z7rN2Qr5AnO+DmANUPtEwwSALvTztbxnY4cUX/g818XKUCJLyyz4MnKsYYB5XrausFOA9BUElkst+wCmH1C5jSkvjw3wLlaIHzsiE3EdaxcXFxcXFxeXRLoKrAGygt7sOwXYIpHhzQlktyUy1ADYbzSswJ4GlhtsJg75LetMhA/LrQNYHxLI/IjAZYu+7xOAPqX7QguIM4kM/sGK4J5VcJaR3ADjjknjb/V7qJP7+v17swjaoUXFsnXC6XarIC4uLi4uLi4uFQBWJJrtA3tdKrgOTC5bGuno57kCNoBfPPMXBVwBfA8k6iyvkq51Amuku1SQ/R0B29zka6j5adOi4zu9H97vyfJstQXWq+wuoI6wC/BUIhPdlmjlo6Fx/UVS5r+p919LPADpwNrFxcXFxcXFZU1SSjTLFiSwtjsSVR7AZLOrdLDWXYnMLdQSevo+Dsy1CZQtC+LWCawR/wv9HOjFesZWPQIHAkN+cWgvWzE/6wDWbVrgDHRhU5r/kMdP6L0dih+LIFlhceDA2sXFxcXFxcVljgAosb3pALweSLSHHH53JGU9c/pdSDzAyK6vCwLty+rzrpuxhsWMhxJZXxyShDWTwGTvSmS2cSgUccM+N1jswQcA61VUQdiaSEjfEwL8OaXtoT4PqyCou6cm/asw1pkDaxcXFxcXFxeX2WAJ0pfIUkMPl58JDO4zAlU9iWoeQfcYOsw7kpqIE7l9xrpDYb2VyNpicQGrICcEeku6fyypSgusqNwksMbhwY6W9YXe39G0cHmNKL18fyJxt2GVtuLA2sXFxcXFxWVrBeAJDGS+hjB3JbrM7knKTONQ33OJ9pQDC/pC75+tIX72kJitCcSBeQewZga+Kv1gzJHfwzXka6hlivzlK+RBtE5+pIUPe8Dc17p7J6m3SRw+/ZEWFdkKbQ163G7H2uW6F/w5jQO5F4mLi4uLy01Im8CvSDSbl834vOoeJjB4KWxJ6gIcABXsKdRA2N11ldOWeWmwl2iYe5Kyo/PSX/WbL1jAaNHEDZWInkl/SenoEECdV2aLXDBFiMOhnTnPzipDMN0HkrLeLaq7oP7xmb6DOAb6uS9RNSe/In77m13ew9zeomVRlY9ln59XJoukf17bnxfPMuldR54Wydcq/XrZMs8WbJOL9uur8srvFoY46PpQ7+Li4uJyE8I60jhMmH3gVUrqaVFowmsToGevj9DPbq4hftbPZhD3oeFyGktixdilO+c3p/ysI19BnQQ2wYsPrB9eRBX0vWdAc9XiCHW3SluB+cSR5ifzy69rumzfdHFxcXFxuXZpEJOcrTHcpoljQMwRx8VWP9prSkODwg2T6o+yHrWDgsoLJvPahvVlj49gaBtrKtOhRGcu+Qpl1aIyz6necX+P0lpQWbZoAQbm2dbxIpLRgsd1rF2uU3qmjTqwdnFxcXG5EQGrY12NX9d1eQNx4BpTnsZrDne0wHOja8rX6APDH8+5N1rg2cmKZTq65nLxyy9uaz1Jd0lcXFxcXFxcVpR1WwXZBBnKh9mxvm2Bfn3T1ElTokWZnRq2M66Tqp0f7GSwvffWhuWhQXlZpV5hwnFT8jUh4kBq2FdcXFxcXFw2DsRtM7BexdzebQt01LsSTRDygUa+6iSTClANgAmTkj2J+uvQxW9sSF6tGcRlBGpCTQKy5YbUiQNrFxcXFxeXNYIFB9abJT0DOkP9fET1dV+/t2uWr6pdhIGkXkd3FXDCEs7eBgE+ZttXYaw7lA8H1i4uLi4uLlsozlhvnjxS8BwstLyS954cATZZlaBuNodRJw0CqULAulBg/VTioda+bA4z/yHAGodZH+tiorkh+bLAOhMXFxcXFxeXDwILDqw3D4D+INMHzXoEfuroyKOKsT6QaDEmgOq/yvsDdR1JLVU0N6SvrKoKAsD6f0q0sb4pdeLA2sXFxcXFxYH1QsC6jocXXyvQgerAE83PuaROZ440r+H63U/XQ83vV3oPzPCh/v5Kw3+o9zK9f0if4XpE4Ybrmb7H+sH8PMDYY73/SH//A4XHwJrrBYx0W9MFKyrPJNoOZ++ZhyZtQyqTZ+b/JrXvjNpGuB7QO8iLDZ+BZmsJYN2gz4LCKSh/DySazSxMHQwpXUg//nug7eKQ8iFUVs9M/q5aWDqwdnFxcXFxcWC91cCaQQ7YaZhG29F7bwkUAawFRvtSQVf4fUqg7I28dyO/J9GM31CqzQEGwHdh/gufsLH+jOIeK8AfaHgXBFLPCCQjnRmBazF1g7b3LxLtkPOzASie6Pfn+swJhcPmDV9QfEVF+55QnOH5Yw3j1ISbm7QuCqwzA1RD+QQ78X+Q6IgJ/6PsWhLNbOLgaovSs6P/N6juGBi/oXt8UFJktj6+A2sXFxcXF5c1iutYb57g4N6oAtw2FHBeSmRlR/of8n1K4Lqg+2cKco/0Ckzy1/p9JJGpZSAf2NEv9XcIs0/gD7rGl5ruEwXWzzWdR7oAGM4A1mwRJPx+reDxG037E4neAAsFmyd670TjfSlRbQRlVEp0aw938EeaNvzmxcWFhtemsnop0WtnV1L34YuogrSprrqal1B+YOX/pPmG7Wg4VULZIu6QnneavkzTfal1zPX9RH+P9BrIYp4UHVi7uLi4uLisUVzHevOkpYBsX383FTAGkHqPgN1QAdilpAz0xNTlUFKHMxwP/z/UsLuSsqE9Ex7iC+n6nsraxj8h4CcyrQoS5O8JoCO+Q4oPdq17lNYdAs5DAoa8+BjSYuCXFXkc0+9LiQw9L1L2JVXnWNSOdYPea9DiRmhhcmHK4b5ZHDRM3TDrj3z1Kura1huY6q4DaxcXFxcXFwfWHwqs66gKEkDjnoKdAIyeSmQ5AYjBWLcUDAagdqz3v1UgBb3gIwJjF/q8EPA7IjAJ3e4xga5H+vuQQOVIUp3hUqJaxSnVw9iAPusgpqDwv9G0HBJALCgvO/pcRyLTfKz/F5TmUGYn+vu5xv1cIisv9OwRpblFcYdwYQoQFlgWZaxhuQVMdziU+ULjPqO0I61tAsDwgor8ogxPJLq4h/pN3ywYANrfaRl1ZLYzHgfWLi4uLi4u1yDbrgpSV2BdpfvcVQAW7n+v4C+TyGbv6mcAVvf1/n0DvnoGNAcA9xsC3oW2h8uK+JuSqkuIxnem348JlAZ5RoAc7atKx/rU/Nc2cTcIVCIuvHNK7Zh1rIeU5g7Ff0wLApGUHe8SkH0pqRWWQpazCgKg3KGyYRN7zDQDzH5C+caCN5eUaWfdcADisURd/DEtSKBqwnrmDqxdXFxcXFwcWK8MrOuoCgKrG6cSdaGhLws2dqj3oS8dfj/W+oT+7VMCrkcESsPnb+W9Xm5bwSXCBEMMXd7fS9TlBqgMz/xfkupk5xKtiTw2v7+g9lVIar86p3CQT1gX+ZrKYUgg/YTyPKI2PCHwPSSQXsyJ60zDPKJFDeJsUr5L6i/5FcC6Q/H9Wt5bbEG/wmHSMwXbX0m0T36k94ZaN2xm8IWp4/DcK/0O/euhLgjC5/9CwHweYMZBR7Yl7uLyIYLzEw1qW+54yMXF5U4Ngg6sN7duBgp0u/p7RyJzDVa0rWCuTeCoZYAwwNUvTBy7Wv8AcbsSGd0JAcWeRPYV8ZQGjBWa3gE915PImI4lsrZ9iSoTpcTDdkLp4TiwKNinfA0UFMP9+zuJVjPCvV/q5wGFhbgYQAI875rnmFnPNc1I25gWCfayjPyOPrtP+cJipE0AXmgxkJs6EqqjLqUfBze5/rkMke5yRlonlI57Jm2ZpCowsy77/Kxr3rvLvJMtkbZswbCWSVO+ZLrzFeLKVri/rmuZ+sgrvqPtf6JtsCW+E+Li4nKHxBnrzZOmgrGW5uWhAcuw+wwgW8o0O9smYJsboNuSlIEuCXyF348kPXjYJsAFVZEGgWNMnoWGwYf2WvQ5ltQaSEGgsqTn2GY00o0DnUh3T3/DrNwDSdVAAEC5zKriQtl0CTiLRDWQtt5ne9ZCi4QqYILnUIc96mdtBfqFAcAZxV9QvnqUdzyf0zMlpRN1uW/qSmRat52BNTPz7TWDNL/u3tUiIN6UenqJdXFxcVkLsB47sN4I4Uko1MlXBCobxF73DFDFZDagusX9jxVodSjskuq+q89/LNExDdhWoTgR3t8SOMzpk0E+vvPCbUdSz5EtSU3qCTHT+GT2t0N5aRMIByNbUrgI7zNzr6T4UY5NZdiaCnAbBkh3iJHbkfmqIHsG0DZMuYvG0aN8DOh5xLdHaWjQb6HFTrj/kX7fpXhtGmZ5eryQxexdu7gsIzumTXW9SFxcXO6KuCrIZi52sN0P03ZVhxlHFf/ZZ+z/F/Sd7WTj3juJ+tWTGXGPTdyTOc/adI4oHZMZ4dh7lxXpHFfcu7giLbPK5sKUjX0H17w02/RXxXVJYc3L42SBsqkq07dXvDurri4WfNYvvyZLtCtu275gc3FxcWDtwPpW6wTp3pY6EUntWDdq2ldYhQKLoB36jnxB7QPvQAWlRc/ubUidQD8bDD9AEFRTmhtcJ6ymM6F6EoksKXYxcrN4bW1onoaUlyblh9WM+GArq3odbFA+mmYsdnFxcXFg7cDagbUD6wSMWXN7TQOkoW7Tor7FuuBQjyllM/ROJwrwWe+d1Wu6FaB0kwT68nCihO/QwYe+eUum9YA3tQ3OA9ZQW8KOVk4LuC7VnwNrFxcXFwfWDqwdWG98vYCBZnYUVjt+Lqne+Q71Leh5gw1uyWZsj08IrPUJlDWlPnqxOGswNouBjln8WFvkm8rEzwLWoW4+oef4cCDn04G1i4uLiwPrawPWdXQQ48B6M8Va0wB4AFMd6gk2t88U4DUJ/MC+9qFEyyW3LXAuA2sgDzVtRzQ2sLrFpgmr24S8fCrvbXx3zOKmq/fBZG+yisssYP2V/gcb5ofU5rA42iQiwYG1i4uLA2sH1htTJ5kD642vF5HIlrKeL3uMhGoI3sEhxeaGgNWJ+c6HLMP34D3znmyu4xgsQvuUF5QxTFG2JLXLDqC9qeots4B1T+IB408o/SG/9yWaatyUBYMDaxcXFwfW4qogmwQWthFYW3vPdQTWVhVEJJrim1C9TQjAHVG7nEjqEXEokcnO6L79H88M6X/8bhjwm5lFZeMKYA0X8Q8kOq0ZUp09MOl4pmHiPkw9Ij3Q/31I7zQoP88oXSGM3+in6OdhxfWA+jccA+USTUFCxxqLgn/WZ14bYP2EyhCeR3OqE6T3oUQb6ENzP9z7nfkNz54PTDj/QOXP+cl10cV1Cq+aaCNNSR3DcPtBeh9T3M81PDFtBm3i0LS1hv7+nfkULbtD+t2gtsD32ZMqg/rCgbWLi4sDawfWmwTgHFhvXr00JGWsGVgjj22J7tYBKAPL+Ll+hmd2TVvl/ve5RE+I3AbG1K6DisObn64/yHtzeXDJzg5uWE1illzoc5cE2GAzG0wvnOGMKZ1g3U8lZe9HVM8M3F/o9z49I1RWEwJ7hT4De+JIW0c//6N+HhnwOTFxTrSMoEc+MWCvZ9olwjih+1zfryjNFwqA+f1Sy+iIAOv3P13/pM89p7pE2D/q73fUz39D7agjUVd8h8p+R1JrIADtnE4u11ltjd8baps