как при измерении финансовых рисков, так и при построении стратегий хеджирования этих рисков.
После небольшого обзора основных положений теории вероятностей рассматриваются важнейшие статистические методы оценки различных финансовых показателей, используемых в риск-анализе.
В заключительной части главы вводятся основополагающие понятия теории случайных процессов: сечения и траектории, математическое ожидание и дисперсия, процесс случайного блуждания, биномиальная модель, винеровский случайный процесс, стохастические дифференциальные уравнения. Подробно исследуется процесс геометрического броуновского движения, который играет ключевую роль в оценке производных финансовых инструментов.
1.2. Будущая стоимость денежного потока
Предположим, что денежная сумма Р инвестирована на Т лет под годовую процентную ставку r(m) при начислении процентов m раз в год. Тогда будущая стоимость (future value) инвестиции может быть найдена следующим образом:
Если же денежная сумма Р инвестирована под годовую процентную ставку
при непрерывном начислении процентов, то будущая стоимость инвестиции определяется равенством:Пример 1.1. Денежная сумма в 1 млн долл. инвестирована на 6 лет под годовую процентную ставку 6,4 %. Определим будущую стоимость инвестиции, если проценты начисляются: а) один раз в год; б) дважды в год; в) ежеквартально; г) непрерывно:
Очевидно, что будущая стоимость инвестиции возрастает при:
а) увеличении срока;
б) возрастании годовой процентной ставки;
в) росте частоты начисления процентов.
Годовые процентные ставки называют эквивалентными, если при инвестировании любой суммы Р под эти ставки на один и тот же срок совпадают будущие стоимости.
В частности, годовые процентные ставки r(m) и r(n) при начислении процентов m и n раз соответственно оказываются эквивалентными тогда и только тогда, когда
Годовая процентная ставка
при непрерывном начислении процентов эквивалентна годовой процентной ставке r(m) при начислении процентов m раз в год тогда и только тогда, когдаПример 1.2. Банк предлагает по депозитам годовую процентную ставку в 8 % при начислении процентов один раз в год. Какую годовую процентную ставку можно требовать при начислении процентов: а) дважды в год; б) ежеквартально; в) непрерывно?
Предположим теперь, что инвестору обещают через t1, t2…., tn лет денежные суммы Pt1, Pt2…., Ptn соответственно. Если инвестор предполагает инвестировать все поступающие денежные суммы под одну и ту же годовую процентную ставку, то через Т лет будущая стоимость денежного потока будет равна:
Какова будущая стоимость денежного потока через 3 года, если инвестор предполагает