Сен Гук Ким

Элементы


Скачать книгу

началом (1) и концом (∞), как свариваются в сплавы разные металлы, например. Тогда между 1 и ∞ должен быть промежуточный слой (звено) из «металла» («сплава») состава 1:∞, т. е. 1/∞. Так могло произойти смыкание бесконечного ряда чисел nR = 1, 2, 3, …, ∞ в бесконечное натуральное кольцо чисел. Так могли возникнуть число 0, а с ним и натуральный ряд nW = 0, nR по формуле (8).

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEAYABgAAD/4QBmRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAMAAAExAAIAAAAQAAAATgAAAAAAAJOjAAAD6AAAk6MAAAPocGFpbnQubmV0IDQuMi4xAP/bAEMAAgEBAgEBAgICAgICAgIDBQMDAwMDBgQEAwUHBgcHBwYHBwgJCwkICAoIBwcKDQoKCwwMDAwHCQ4PDQwOCwwMDP/bAEMBAgICAwMDBgMDBgwIBwgMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDP/AABEIAicB9AMBIQACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/AP20+NHxzX4Q6nptv/ZcmpNqMUso23Ah2CMoP7pz96uLk/bS8k/8iu/46iv/AMbquUnmI3/bb2L/AMiyv/gyH/xuoZP25fLHPhgev/ISH/xunyBzEL/t47TgeFQzDjaNUXP/AKLqof8AgoGV3bvB7rj11RR/7Tp+zDmKkn/BRVVO0+D5PqdVUf8AtOqeof8ABSyOwhkkfwXMyRqWJXVV7An/AJ5e1Hsw5j2vS/G/i7VtJtbyHwrpfl3cSzKG1s7gGUEZ/cehp0nibxo2f+KV0n2/4np/+MVGgyu/ivxkDz4X0n/weH/4xUJ8X+Mv+hX0v8NcP/xinoGpA/jHxlu/5FvS/wDweH/4xUZ8Y+MlP/It6X/4PD/8Yoshag3jPxpjjwzpn/g9/wDtFNXxp42U8eF9LP8A3Hv/ALRRZBdki+NPHJHy+FNJP118/wDxinJ428dZ/wCRR0f/AMKA/wDyPRZD1FPjLx5n/kUdHP8A3MJ/+R6T/hM/Hx/5k7RT/wBzF/8Ac9Ggai/8Jp49P/Mm6L/4UR/+R6UeNPHyj/kTNF/8KI//ACPRoGoh8Z+Phz/whmif+FH/APc9J/wmnxAYZ/4Q3Q//AAoj/wDI9FkGo3/hNvH4H/Im6H/4Uf8A9z0Dxv4//wChM0M/9zGf/kaiyAB40+IA5/4QvRP/AAoz/wDI1DeOPiAD/wAiVof/AIUh/wDkaiyDUb/wnPxAA/5EvQ//AAoz/wDI1O/4Tf4g5/5ErQ//AApD/wDI1Gg9Q/4Tb4glv+RL0P8A8KQ//I1KfGnxC/6ErQ//AApD/wDI1FkLUQeM/iEf+ZJ0P/wpD/8AI1H/AAm/xCH/ADJWh/8AhSH/AORqNA1FHjT4hY/5ErQ//CkP/wAjUn/CafEIn/kS9D/8KM//ACNRoGoHxn8Qv+hL0T/woz/8jUDxr8QG/wCZL0X/AMKM/wDyNRoGov8AwmXxAz/yJeif+FGf/kak/wCEz+IGf+RN0X/wo/8A7mo0DUX/AITL4gY/5EzRf/CiP/yPR/wmfj4fe8HaKP8AuY//ALno0DUUeMvH3/Qn6L/4UX/3PTl8Y+Pj/wAydov/AIUP/wBz0aBqA8aePM4/4RHRP/ChP/yPS/8ACY+Oh/zKGj/+FB/9z0aBqKvjHx03H/CI6N/4UH/3PTx4u8dD/mUtH/8ACgP/AMj0aBqKfGHjgHnwno//AIPz/wDI9A8X+Nv+hT0kf9x4/wDxijQNRf8AhL/GnfwrpP8A4Pj/APGKUeLPGjD/AJFfSR/3Hf8A7RRoGof8Jb4xHXwzpQ/7jZ/+M0Hxd4uI/wCRd0xfprR/+M0WQtRB4q8Wf9C/p3/g5/8AtNL/AMJX4qP/ADA9OH/cXP8A8ZosPUX/AISbxR/0A7H8NVP/AMZp6+JvFAHOiWf/AINT/wDGqLIWo8eJPE3/AEBbP/wan/41UieIfEjf8waz/wDBp/8AaqNB6jxr/iIf8wez/DUz/wDGqmtPEHiMz7V0OwZWGSTqZ/8AjVLQNTU8I+K5NfXUI7i1+yz6bdm0kRJ/MUny0fIOB2cdu1FIZ4v+2nL5Xi7wz72V5/6HDXi89xkf1raOxnLc5nxr43TwmkIaFriS4JKqPQEV3HwL+EWsfFtTcXkL6dZyNlUkwV2+46nP1FNgeieKP2bLrwNaNc6YNEu4kj5W4ttje+SM/niuHsPg7N45ikuWWwjzlUNuSQCDj0xipUgtY81+JHw61T4das0OpQeWMlUcfdeuB8Uy40e86/LC/wD6CasR+mngT/kQ9DH/AE4Qdf8Armta3auc1K0w+U1Um2+lAFZztNNLZ7VoSIOKkjX2/HFJgzjfid8ZrX4Z6xb2dxp+p3jT2kt2ptY1ZVWMqDuyR/eH50tt8bNFeS5jbUofOs4jNOnln5FUZcD1KjqBnFFgbK0X7TXhFdPS6m1aOG3eUw+YYJP9YFDFfu9drA+mKh1L9pnwzZQ7l1y1T5JZPnjbcBGy78rgHADAZ4pcocxoX/7Qvh7RrdnudWt9kYcl2jYbgm0tjA7B1z6e9WG+PPh59QurFdSRbyztmupEZSm2MBSTkjsCPzo5Q5jQ+GfxN0/4mQyXGm30N5bwnyZCqFCsgAJHNanjTxRZ+DdGkv7ydba1tV82eUrkIg6mi2thnG3f7R/he2mOdatdscpt2wC3zgKSSADgAOuT096rp+0roK+PL/QZL5RJp8IuGuFAaGYfOWVCAfmVVBxyevcUcouYsXv7SPhrTNCt9Vk1m3/s6d2hSUQuQ0iDLA4GRge3qa1Lf4x6ReaVf30eqWYj01gl0knyGDKq3Q4PRl56HI9aOUOYxf8Ahp7wtBE8suuQwxpE8zG4iaLy1TBbPy+hBHPOay0/a/8ADcfjG/0+6vPs9vYWcd59qEZMU4bkovGdy9x7+oIp8ocxtQ/tI+GJnu1TXraQWbSLK4iYrG0aq8i5C4O1WGfTPWo7z9qPwjp0rQza1b+bG8kcgET7o2iAMhI25AXcpJ6UuUOYcv7Rvh02izvrMEayO8YjaFvMXaASxXblVwQcnj+mhH8evDc+sXNhHrVu15ao0jxiNuVVA5KnGG+U54zxRyhzFFv2k/C9vpq3kmrWv2aYyCFyj/OYk3yA8cMFI4P5VPbftB+GdRlhitdWjkmdnQgxMCCiLI3GB/AwP40crDmGT/tH+GYfDC6wdSt/7PaZrdXxlvMXJZSvJBCjPPYitjWPiNbWHgqTxBG1xd6fHbrcBbeHdJKpAIKqeTkEccUcoXOR8P8A7VGh6npUl5eJqGkwpP5W68txGG68gruzgrg5Ixmpov2odF1HxpdaLCs6tYO6T3hx9n3Im8qp5LnBHQZ4p8ocw2D9qfwncWzSL4gtNuwvuNtIiqqqJGOSP7jKfx9xW5Z/HTQdUkt47fUYWknDgKY26pEJW7dQhB+gpcocxq+BvHtj4+sJrzTb63urWNmjYhdrK45IwccgEVzyfH22uPiLL4Zj07VGvI5/sxmaBVt1JjLg7t+SMA9qOULk3xL+Ndr8L3tX1AXEkFyksoltYgyoEG4g7jkk9AB1J7V0/gvxMvi/QrHUI45YYdQt0uUjmXbKqONw3AcA4I70W0Hc574ufHjR/g9rem2Op/ao21K3uJ45Fi3RnyV3FS2eGP8ACO5461T0z9pHw7qNpbzNeratcWwuhFOhWSNSm/a2MjeByRnNHKK5PffHTRbG0S6l1aCO3V41Z44mkU708xQSBwdvP0z3q3p3xr0XXNRitbfUoftE0PmIuCpf5N46j+7zjrRyhzFGL9obw7e6a1xb6tC0cUnlOxibcGxnpj2JOKvQ/Grw+9x9nbVbdpvLEvyKdrLt3deRnbg464o5Q5iGP45aBPo0l8moxtaJIIi4UjaSNwyOv3fWum0q+/tCPzAylGXII6N6Ee2P50WHcmoqRgeaVcdxQA/A9Kd2oAcmDVnTUBlb/ZFAGF8O2/4nHi3/ALDbf+k1vRQB5P8Attts8ZeF8/8APjef+hQV4jK+4Cto7GctzkfGMVrb+I9Nvr6YR2tqrkZ/icEFR/X8K+pP2bPilousQQ6fa61p7XkgH7tLhWkI9cdaJbAtz0j4uailj4PumRfMkWIsTnG7HGM15L8HdVbRbCOGRv3Ujea5/hBYk8fyrOI3uWP2hdJg8SeBbqadVkSEF1cjG0+ua+K/FcgXSr7Dq48mQAg5DfKeQa0iI/T3wEP+KB0U/wDTjB/6LWtSsTQrz96pXJyTQBVZs0ZqwAHmjNMDk/iT8JbP4j6gtzdXF9C0No9ovkTGMMsjKW7H+6v5fjXMal+zPZ3kl1Nb3mq2qzLJsHnbvswl/wBcVBHVwOvbtii5NjJm/ZXsZrO4t/7a164guC0sML3A220jIqF92MF8evbPpV29/ZK0W/tpDdXetNcXPnm7lN0XafzQgKk44UbeAOg7c0cwrEmr/sk+G9d077LcXGqfZ1854oluQFhMgQMw44PyDntRD+y1o6+Jbi+S+1pbi4hltWcSjAjm2mTPGWyVHJ6buKOYfKWNI/Zh0/wzFptvpt9rGm2Wn6ydZa3WQmOdihQQ57RgkNgDkqK7bxn4ch8f+EL3SZ5po4b2Iwv5RKsVOCcH0IxSA8zm/Y18PW95thk1CHbMZkcyK2A+1XUAg4UlFP1HXmqtz+x7DefEHVtQk1if+xb+DbFpakg2s2GHmhu5Jdjt7U+YXKXh+yLpknhltNbWPEAiJmkWJLpVj86UbTJgKMEAkDjAyatTfsk6HPq19fXE2qTTXkPkzbrk7X+RFz06jyxwTwRn2o5g5SPWf2XNN16zt01LVfEGrTQwSwxyyXO1gHAXeRjBKgcHtWHJ+xhDq3jfVbm+8Q6lcaLe2n2eKxVjHNbS85kD46ncxz/tUcwcptS/sj6ELWa3tdQ16x84yrthvMCESqqMOmCMJn159Txm3/7INnJa6hLBq2qDWtQW4E19cXBkSd5Y1RtyrjHAyqg8En60cw+U3I/2ZdOuoY7h9W1z+0pFKXV1FdHzLlGVUeFsjPllVx0OMVX1f9k3w7qer3GqedqEbXELwoPtI/dqYxEAmB0CqMDpx0o5gsVbz9j7w7f6N/Z95eay0KyT3JjknCDzJUEbMFAx0UdOnWp7T9jrw697JcNeau006uXf7V87B4li27tuSNqjj1zRzCsLa/sjeG18L3OkzS6heWk1xJdBZp+VndBGzqFGAdowMdOtelaN4Zt9A8MWukxSyNBb26W3nl/3h2qFHzD+IYBovcdjzzxN+yFo2o+GtP0gahrU0Nm8y5a53SGOYhnHTjJAwRyD3qXVv2adL1O8la3v9YhhVvN8lJxtSfZsM6jGd5H580cwcpnzfsgeH7y923Woa00cbEwQG7+WLdbpAT05wqAjJPPNXNQ/ZV0nVLtXbWNeEajDRm43BsxCEj/vkLz/ALPSjmDlOq+Evwgs/hNo13aW81xdDUJ1uJnldfmYKB8oAAClVH1rIs/gLJYeP5Nfh1/Unuri/a+ZS/7mWMoyeTsxxhWwDnoOlLmCwuq/APTtdtdNj1G+1S+XS3nltri6ui7B5gQc4AzsBwucgD6V03gH4eQeD76zlh1LUmhttNTT47eefdEQpyHI/v4ABNK+gWKvxW+Fuk/E7UbG6upZpWsoZoUSOUbPn2/MRg/OpAI9xXKQ/sveH42m2XGoQ+fbtAV8xSSxj8syliAQ2Opz+FUmwtqMi/ZdsItPW2s9S1iws3Iaa3t5QI5nEXlq+7H90njvk1Npv7M9jpkkcyapqy33keTJcQsivvCbBJ0JD7QBRzBykafsu6R9hkj+26lJmVZELujNGyoVYAsMYYHnvmr9n+z9o+n6w99bvdQtJCY2COoyfLEe8ccEqOx/CjmFYpWv7MWirprWazaigY4OZV3EbduOmOnfBNeleG9LXQdPhtY2maGCIRr5mc8eppSeg0i9mmlsNUobF30Bs0WDmFBpwbmkMcDkVd0pvmb6UAc98OpCdZ8Xd/8Aidt/6S29FALY8n/bif8A4rLwr/143v8A6HBXiTtito7GctzS8CfDzT/iT4ssotUaIWFjIt1NvYDdtPTHfPTFbvhX4P2Y+NutXHhm2+x6W5jkj2Rg/ZLlGO5eeVHIOAaAPozxbaxXXgi8W7dvONuVbC8MSCOB/OvIfCHh4aWn2e42tCyEq+OwzxUIqR0ERt/FPgORGX7TBcq8Lp6BWYGvjX43fD9fhtfappcPm/Y4YJfspfndHsJHNXEk/SfwBz8PtFx/0D4P/Ra1p9KxNCvcLjdWfPx+NAFcmmiqe4C9KUHNEQJIucVzfxd+J9t8Kvh9qmtXNrd3kdlAW8q3j3MxOQPXAz1bGAMmjdk7HzhN+29qevT+do8Oi6TANPkmS11D97M7Jdww4IVl2g+aWAIz8uehrV17/goQNGTUryPwzNNHZ3TWYle+jt1O26W3LSKRmMFm3Lw2R6dKvlJuVfGX/BR5vBl55LeFYby4a3kkUW2qxyxuyTxpw+3HlYk3F88YIxmt7V/29lso9Unm0PTUg022urqMNq8e6ZrZlUpIMZiDbiELD5sDpnFLlK5jmNR/4KjQ2egvd3HhCPy/IuJ1jtdbinc+TMkbb8INi5fO4noPXitvWf2+73wzf6jbat4LuLCTTLa4u3txfFndI5UjR1GwZRtwYMMjaOaOUOYsv+3dJfwJHH4dtRfSRXMskV5rEcFsRAUAEUrcOTvBxgEd8VS0z9v/AHeKde0u48NQ2tvoLTj7U2rI0czRqpQRnGXLFgrBc7cgn2OUXMRa/wD8FI