Владимир Шулятиков

Неаристократическая аристократия


Скачать книгу

по вычислению немецкого инженера W. V. Oechelhauser'a, штаты их выражаются отношением 1:10, 1:7, 1:6, даже 1:4 (к числу рабочих). См. его публичную речь «Technische Arbeit einst und jetzt», стр. 28.

      9

      Сокращена цитация из «Вишневого сада», она в том же контексте полностью войдет в приведенную в настоящем издании статью о Чехове. См. «Теоретик талантливой жизни».

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAMeAjoDAREAAhEBAxEB/8QAHQAAAwEAAgMBAAAAAAAAAAAAAAECAwYHBAUICf/EAGMQAAIBAwIEAwUEBwQGAwoFFQECEQADIRIxBAVBUQYiYQcTMnGBCJGh8BQjQrHB0eEJFVLxFhczYnLSJIKzJjRDRlNWc3SSlRglNjhjdaKyGSg1N1d2k5SjpbTT4ydVZYTC/8QAGQEBAQEBAQEAAAAAAAAAAAAAAAECAwQF/8QAKhEBAAICAgICAwADAAIDAQAAAAERAjESIQNRE0EyYXEiQlIEIxQzgZH/2gAMAwEAAhEDEQA/APsQmCTEz379q+q9pCQJz3x3oEBJ0zpB9OtANcJQgCT0k5qgwYWCWiMdKgcsWILQDn+tBl7wkxqn5DcVYgIsGI8oj5bVYgPZQS0ddtqWD9sgATMExvU0HGoid+jdPrV12JPlEIDAODvNI9gI0HXEnf1p+hN511AZGNwIqhSXIg6uv4UATq0xicxvQBWXMQCu2aCWMSMEnBoKDBT+GaCYzqWVIGwNAmcaQZIHrRQxlpYrpIAwM0Qo1agMj06UEkSQQCo7nEfOgGCrJHTfeKAjQpIjIn5/0ooLhQAZkiT3JotMjcl1aCIGR6+lUOSCAxMkwudjUT7TLBpOQMTH1qquNQBmDuQOtQ0DBEEwNwpOCP5URkLul4WIjberShZWSwDKTgjbersSHbRLAicT2NFNZLQpjcgbE96JJ3CLZwJJIkjp61NkJnV0IA/fVpUso1a9OfQ0gSWJVtI0scZySPr++qFOhQCBiN+m9BZEhySJ3Mip+gm2JKgnB+dUZhdMkEgEQR2oJlgPxAOY3oAIrKuk6SBgn85oC4PKAc5naSaCGYScNp6HYfhVAXBUE5BOcfnFKBqkgOwAJlSf3VQjqGr4ZGd8UC1FiSoyRJGfu7UWkvcOlQQVUZJG4++oaSZAbyywwROfnVQOw04B/wAJESRQEANIBCiZY7D5UCuCDAZVYyQpo1SJB1ESDMknv2oplyGAb1xG5/nRgtRwWie5Mj50WkklRIAOcYiTRYhK6tYEbiZ6xRZqII6QvRiTJMfmKIS5fVjf8xRQSbgbEgjV3PrRINgBuNoydjRrSGKq0tkbk9qIHbzoHAI7R0oBibcZJxOetCO2bs1xXAkbGB86LoMIUksQ5xqA29YqpalvsAAL2PWrQ5yreUgqQRia8riM9QNoidjQCy+BvHTagGIXA3nB7UGfvNJE5MRMbCrQR3kydxJ6irQJDbGZz61Q1JRQDEn129amxG+JBXb61RoMzmWbrWRIOrGSd60DIYbmO1BDNkIDGndj0FFGAcHSc/SiJUbwf5xQJgxKyIAMHOdutAwnkJMFdjG1AyIJggH8DQTq80zgCMUVOstkaZAz2BoJL2xMT9BRFEsQo6Eb9vlQQADmQMwO9BcgNG4k7daCXddBwAQIAI+6ipZ3jUZAAgYyKNE2mSuRORv99GSDCAurbvjNUpQQEAdScAnFQSgDLpJgDbTRZhDsqjVAMYJB39aEC42EmZzgbmrClI1aiAQMeUwTSAmAglQYB2kiTV0miDwBrkDbB60UywXOAWOrv9Kggke91QIGDAOKokvlgNhBBJNUVpYnJMjEk70B5SwJMk/sg/xqBFRBMSC2QvX76ozbyowJJDHY96AWNMfs/cKAYKCZYj0BkTQAlyMNA2Hf0oEHnUIA0jXHrQZlyVMNGdpmKsAMgAah5RJnpVBqDJ5WCjrpNBJ/WL58x/h3FAi6RJ23n89KLRB5bMgnyhQaFoBzqCqx6EnIohxJBgErkCesUCj9UYYkHeBM9aLSbrEnIYgY6j7qLpJURKqWZf2W3Iom1OigSCAv+E0QlChSSdInr07UCBiBECI8w2o0hgEXLmTG5/MULBVbflGoM2QoO1FSVVJBgH1OJHWgGkEiRIAEzH4UE6haIzg7GOtUsBgRoKgFhJnOk1AimjVvJjMz91URPm0LmT1PTt86LRZ0gidUxkSBUNKJYsYgkYHeasIz1KhXzsyk7fhFUIXGP7ZPrH9Ko7AnptGdXzryOJQAdhAIPcUBmTBUwZwaCJLSDOe2SKokzoION4Hc1QlErpIO2TVFEQoAGayGuomQNUYziKaEkmdgBPQbVYDC/rD5Zx1qDPQIECNxg1RBcux1gHaQelUXjQSWKr2jcfxoJgAEQCCMHegFhm1adiSR/GgepiYMYGwOaAjMkkHaTQQxMsNMDvFFSxhZnbeB1oDTrAOV6lf60RDLqK5wKK0MBzOwmYFEIjC4zG3YUVLHSpG8bA70WknWxjCsN46VQiSpLEMrf09aiAkFJnPUgzFFgjCoAB5TtG1FIgALuVAG+c0Skl5U4AA7dvlVpTYQyg5bcA5IoJkaoAJMZj+HarAoTdmTqG/pUkSWEnSYRvumqEzAr5Bp3kUCLAoAY7zHSlCYChcysxgUFMAQBkBRMUCa4EY+SY3JNBmWBXSx0SIAicelANIEasDOTj6iqMwZyQQqzKjagbAqIBJ6HE0C94B8QgTq+lKCnOZUAnI2+dFCsAmYB6CiJUqfMyzmcmtCjKwSFM9hEUE6irsTDKPSIkUWksoYEGYI3B3NDTP4lP7juaIYQYIaV7Lv60CW0FLMDA7RiaAYgCYgnGen+dFqiH+1IEzEjGVoTJBwRpEkDOetEC22Zy0kmILREmgjUyBWECM56UWiLFoUsZgznr8qLpL6rTCQAe0nPahdkXKMdiSBpMb/AM6KpkhctJ7bUGeWJ0/ATmB/HtRRLayxAEdQKIeHQMWHeSJigk+Ro/ZI6Zk0EuwmAwC5iBj51VS4EIXQZAnSNzSENYYqrGcExEfKrIm2VFtiemRPX+dQZl21hiBpMCI+41VVqc5/iKi256sFYXEjc153nJmVtImemreKUIHxTk4O9WRRwCJg9IOKkCQwZt8kRJJqgbBjAMb0DlUXJ9JG1JCgwe2+qlgJkwdweu9XQTMzHSCIB39PWpQg+YAfD6mqKjYCT0nrQJmB1ZBMHNAkksPMTPcRmgYAAA60A0lAMnrIoqWbAnAj9n99BmswIEkHIHbvQNiFJBBBjC9DNEGVJWcmCJoBvPO5k7dKBMQFOSDOQTtRaQHZ2MISe4NFBMFmIAYftfuoWgEMdQU+UyZG1EpbAEkAlgomTmgQnSR+x1xk+h9aKlyyMAokqdz/ABqwoZtZLapMEQvSn2iLaqxBjI9fzNWVVA17Sdw353qCfNMlWBGI3jr9aqJLqrBoOk4279adqnUroFxq2IG1UJQQCAxJ2id4/wAqA1jWJEHOB/OgZMk5Hl7DeglvJIgEzPlyf60Ca4AQ0sCcCe/egWDAksPiziaCVJIJLCcQQOlAwwZgVmO/bv8AOgkjQSCYUGcfyqiNRIBKwZiRjPyoLuDHcg/FNBL3ABpO89op9gYrp8pBxpwN6CDdm2NKzJhu/wBKq0RUBswF3gSJoWkPEiJOxPaiGwKgsVYsfxoExIjTpEbHaaLCX8+oEgE7AYA+dF0m2JWTkbyBmiADJxoPZh0oiZDFQxbSYwcYoEWITy+bMwT69KNRBBiwgAbYU9qKZEBl1CTtO9Gf6nUSFgtIBEnHzosFqD3AQAPWN/WixFJzIx5upP8ACgcK2J6YmifZBysgQkT5hVVOlhgGB3iai0iYBYS2csNyKpaSwCgjytGAu0+lVCb4l1bkiQSR95oLZzMAqYEhgen5/nRaZwqNMQ4wfNJzQ0VsQwPmEkRHWfT871UGicgsB2AGKFuegyW2DR1rzuQaSTgYjHr61LR43G8WvL+C4jiboY2rFprradyFBYwPpT6J6h89t9uDwpe81rw54gv2hk3FS0AB6jViuXyRDzf/ACMfTs/2We2nwz7YLPEHkfEXV4nhwG4jguLte7u21OzQCQyziQfnFbjLlp1w8mPk058SqMAB9e1a7dCmFVQcxvERQSzFNRwOgBG9ToQ0agSCa0ptAMAxOB3HyoiSdRgmWGx7UFoJBGYDd80ElhtI0x1OxoFIBJgkRgTigLjDSDAxG/yoqVYEAZHcDoaBqxnIwB1wJ+feiJC65gQDOw3oEVkqP8PYUHjc45unJOUcdzK5ba7b4Th7l91TdwiFoE9YHWpPRM1FuGeyb2vcu9rvIOL5vyzgOM4Czwt/9Ha3xZQuxCB5GkkRBAqY5RlFsYZxnFw8X2R+2vlntk/vc8t5fxvL/wC7blq2441rZ1l9UadJO2g70xyjLR4/JGd0j2a+23lntM8Uc/5HwXLuN4TiOTaheu8SUKPF02/LpJO4JzUxyjKaTHyRnMxDsRPLOSZMietbdqNxgyQM7iidhToJPScCfzNFpNwyvn8yzvq/fQKAxOoxH+Ggll8rwQQBiKv2oj4hqjEk9qoFdQCSRjdSIjrUmBJYLkCcbkY7zVhEGQpAGr9mB86olpBAEyMHainr06RlpE9vzvQMKdxAbf8AzoAGWCgY9RIignGoSNt5NBAhWgtn4iYxQMt5is5GT5ZoG7eVplQTOBvQS17AUeQDMzE0EvBVDAQz3xNWBBViJgtOADjP5FUDKHB80EYBjYdqCnJR4AlugGaEdo94NI1AjzY6UXSHuEkQJBO/+E9KIYfVJmVHRhMH+VAtIEMTgEgkbD5UDa4QYVtB21EzTbUQz0lmlTrQZBXEn+VEsMEu42U5miIgMdIINsmT8/X8aKbEW3YLMbSM470WIK5+sA2GoZJ3odQRY6oXbsQJ9DQ2hrZKwpM/MZ+dFULwBBJ3kkRRKZXWc5YA4ESf3Ua0CusajLKDt2oidQLAAeTsaDVgwAYnAGBMmgyvKFlpXSDEGDVXSYIQkEgTIzgjehZFgGlRCnuMHO9VFRpM5UQYJM/hUEm5ciCsGCQx/Par0tMzktAAgbnBj6VS0spssrDUZOZjtUj0hlCII1L0IJmg3VAVEi3P+8M0tac2PmXBKjua88uBrqjSwG9Qes8SMB4c5uD14K/BH/o2pMdJlqXxh9mr7Rnhz2L+Cuc8u5unMb/GcZxa8Vas8Iq6Lii0qwzMwjI7HFefGYiO3g8Xkxwjtz/7I/h3h+deK/Ffj5eL5dwo5g123a5HwN4Pc4RLl33k3FEaBgBRGcnAgVrDdungi5nJ7Pxv7Vvahxvt05v4G8Cjk179E4dL6pzKzbWB7tGcm4zAbuIHrVyzyiahvLPPnxxez+zb7X/FntQ/0v4bn13gP0vlnu7XDnh+FFtEc+8B1QfMJQdRie9awynK7XxZ5Z3bjvi2/wDaF8O+HeP8R8w574a4KxwNluKu8t4Y2nfQoltIKENjprk/OsXnuWJnzRFy7Z9jHtK4j2k+y3hPEvHWbXC8WBftcSLIPuzctSCyg7AiDHqRXXHK4t3wy5Y8nzzyr2++2fnXgHmvjHhP7gPh/ld33XEXX4a2t1W8mFtltTf7Rdu57Vy55PN8vkmJyjTtfhva34hvfZcu+PHucJ/pCvDPcDfo49zqHFe7Hkn/AA+u+a6cp4W7c5+Pl9p5Z9oM8l+z3yzxr4lPD8TznjffWuG4WwgtDiLy3HVQACYUBQWPQA9SKnP/ABuSPLXj5Zbcd4T2+eK7n2aON8cNc4D+/wC1zQcIrDhALIt+8Vf9nO8E5mpynjbHy5fHy+3KfYN7frftB8G83v8AiW/w/L+ccjVr3HlLfulPD5IuqvSIKkdwO9awzuO3Tx+TljPLcOH+xf7RviP2ne2X+5uItcHwvhviLfE8Rw9gcLF5URZtzcnPrjvWcM5ylz8flyzzr6cj9j3tl514t9pPtA5Tz7ieAtcl5At57NxbAslES+yS7zkBRVxymZm28PJOWWUTqHj+yT7QvGe1X22c05PwVqxa8J2+Du3OG1Wf190oyL7xnnGrUTpjGOs0jOZypMPLOedfTiHgb2u+172utzrk/hx+R8v4jl3EM97m/FWxaW3bLFbdpVhxrJVjMHA6bnMZ5zpzx8nkz6xcw+z37ZPE3inxTz/wZ4yt2P7+5TqYXbdsWy2l9FxGC+UkEqQwiQa1hlMzUuni8k5TOOW3bXjwm54H8TFTj+7eJwf/AEL10y1Lvl+MukPsSkj2Xc9gCP7xbPb9QlcvH+MvN/4/4S9T9hdQx8ajf/pPCYn/ANNTx/af+N9vT/ZzTmlz2h+11eS3LVnm5s3jwjXk94gujirhUMvUEwPrWcLuaZ8V8sq27L+zt7ceY+0Pk/iP/SprFnmnJ3N28OHs+5HuNB1SsnKsjAn1FdMMribdvF5ZzieRewX2p+KPaN4Y8WeI+dHg05bwr3E5fbs8MEPlRnYsZJaAba/OamOU5XJ4s8somZ06r4D2/wDtl4/2fcX41tHkJ5Bwt8cNeuvw1sXRcJUQLZbURLrkfwrHPKrcY8vkrl9Of+Kvb/zfwp7AfC/ik2eG4rxDzoBAxtabFtvMzvoB6BQAs7muk5zxiXXLyzj44y+5cC8e+0H22+zTkXJufc559yocPzVv1XBWLFq41o6A4FxfdgDB6Me1c5zzjuXLLyeXGLmdube1/wAee2DwLY5lz/g15APCFt7P6PcuLau8TDqg8yatXxk9MCtZZZRLeeflx7+nm+yjxj7W/E3LbXiTnY5H/otf5ZxPFWbnDi2vEF1RjbJthiwGpcjtTHLKe5jprDPyz3Ok+xb288Xz/wBl3iHxV404nhbdnlnFhJ4SwLWpTaVggWTqZmaB863hncTMr4/LM4zlk8L2Ze3jxF4+8Ie0nnl5OE4U8l4Y8Ry2wlnFsaLjKLhn9ZGle05qY5zMTKYeWcoyn09bwX2mOccJ7B/9IuYtwnEeKeO5le5fy6zasaUOnQS5tg+YKG75LKKnyTxtPmmPHynblXj72teI/ZJ7JeVcy8RJwnHeM+ZNpThkse7scOxXUQyqZbQsA5yxjArU5zjjc7ay8mWGFztwnxB479tvsx5Ny3xd4ju8o5pye+9sXuWoiC5YDiVV9KgoTkSGaDANY55x3LnPk8uEcstOS+2727828M+EPBvO/Cv6MbPiAPcjjbPvNK6EKiJABBYg/KtZ5zERMfbp5PLOMYzj9vS8b7Xfav7NfF/h3lnjflXJ+K4bm99bNpOXMhuEFlQ6SjGGGoGGEH92Y8mUT/lDHy+TGYjONvpIrDaQdRBgDrXpe0tWmQW7QetAnuaAQhG0lRQ2RZt3HmjYbCasiQpYDVA0nC6fxjrSBIAOoiQ2xA3qiwvmB1GRnNBkbkshgqJjJmaLEewwIaVYA/FAG0d6IDLAkebEb70GbDygkyxM/MfnvQNy4UkEQR5Zzii1ZCA0FoB3UUXRLKhdzneZA7GjIXAAEAqZAP76ABxIAJzKT1oUTPpBUHSo+ZB7zRqmfvAx1hekAHvRQFLjJMzHoKJ0baiWM9TEjI70IZG7DFW83mkM38qNRChePmGqJ2pSIwDpSIYgQDv3NBbWSIYAFlnc5oiQ0MNIg9S2YotMmOkMSIOxBxMbVVJVNsAgCYkzuDVQ9IBEDSG8xaTUALnlMwCR1PSklM2A1EqWYATIO4qwpXgpEsQViPX6etILCSqamQ7QDp/GaIz81snYjBHQb9aq0t9ShfMcyMDaoaIWnj4z901S3PQSrFYADCBXmcDJ1scgn03poes8TGPDvN9Rn/oN/b/0bVJ0k6l8kfZP9qHgjwL4H53wnirmXB8FxF/jVvWrXE8IbzXLfulGIRsSCIrz4cf9ni8WWERPJ4vsW5/y2z7cPG3j3lHC3OUez/l/D8Ve4l0slbdu22kJbCL+0WBcWxkDtTGY5fpPHMc5yjTnf2ceMb2je3Dx/wC0OzZuDlV0rwXCXLi6SZZMfMJbUkdNYreP+WUy6+L/ACzyycH+z7zHm3LPC/tr4vkCtc5zYt+84UW11sHD3jKr1IEkDuKzjNRLl45mIypwzw1zfwD4h9mnNrXNOX838U+1LjRxH6Nce5fvaDErdUh9OlFDM2oE4PSs9Vc7YicJjvbsLwP7VeV+zj7J9u0b9z+9+btzLhuAS2hZTc1KrFmGFCq4bO/StxNYuuOcYeJxPlHtO8G8l+y1zPwXb5pdfxLx+q/c4ccLcCC4b6EL7yNOEtjPfFSJjjTEZ4x4pxvty3w34z5Vzn7GXiPkfCX3ucx5PwY/TbbW2VbfveMLJDHDSO21auJwmG4yifDMenpfZt7MuY+IvZHzHxh4ixynknJOMseHuBf4WZveNc4kg9NTEKepE7KJxETMWzjhOWM5ZahhwGk/Yf5n5l0jnYH/AOuSr/oR/wDTLkHO/s6c68YcJ4M534X4o8LwniHlHCcL4gcXVUWkFu2WvEEjWGCLKiTrUGIYxJxnqvtZ8UzU4/b2XgnlHBeHftnvyjl6CzwPAcp/RuHtTJW2vCWwAe5OST3JrpjFZ01jEY+aodeeEvBHPPaP7X/H3hvlvEPwXJeM5jd/vvjre9vhk4l3FsHbU7QAvWJOAa5xEzNQ5xE5ZzjDsL2Ncq4Lkf2vvFnK+Aspw/BcJwl3h7Fi2cIiiwAPXA36nNaw6zp08cRHlmIcX+zN7UPDXs45x45XxDzNeWnjL6NYL2nfXouXdQGkHPmGDvTx5RE9s+HLHGZ5OU/ZrtcR489tHj3x/YsXLPJ7xu2rVy4sanu3FYL/AMQRJPbUKuHecy14v8s5yfRHjuf9BfEZY7cs4kQRH/gX/Gu2WpevL8ZfIf2dPb/4X9lfgfmXKudJx9zi+J4s8RbPCWVuJpNpVyS4gyDiuGOUYx28Pi8kYY