Дэниел Сигел

Сознавание


Скачать книгу

Эпель Э. Эффект теломер. М.: Эксмо, 2017.

      5

      Сигел Д. Майндсайт. М.: Манн, Иванов и Фербер, 2015.

      6

      Рекурсия – определение, описание или изображение какого-либо объекта или процесса внутри самого этого объекта или процесса, то есть ситуация, когда объект является частью самого себя. Термин используется в различных областях: от лингвистики до логики, – но наиболее широкое применение находит в математике и информатике. Прим. перев.

/9j/4QAYRXhpZgAASUkqAAgAAAAAAAAAAAAAAP/sABFEdWNreQABAAQAAAA8AAD/4QMvaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJBZG9iZSBYTVAgQ29yZSA1LjYtYzEzOCA3OS4xNTk4MjQsIDIwMTYvMDkvMTQtMDE6MDk6MDEgICAgICAgICI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLyIgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iIHhtbG5zOnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUvUmVzb3VyY2VSZWYjIiB4bXA6Q3JlYXRvclRvb2w9IkFkb2JlIFBob3Rvc2hvcCBDQyAyMDE3IChXaW5kb3dzKSIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDowNjY2ODNEMjE1QUExMUVBOTU3MUJBMDk1MDY5RUMwMSIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDowNjY2ODNEMzE1QUExMUVBOTU3MUJBMDk1MDY5RUMwMSI+IDx4bXBNTTpEZXJpdmVkRnJvbSBzdFJlZjppbnN0YW5jZUlEPSJ4bXAuaWlkOjA2NjY4M0QwMTVBQTExRUE5NTcxQkEwOTUwNjlFQzAxIiBzdFJlZjpkb2N1bWVudElEPSJ4bXAuZGlkOjA2NjY4M0QxMTVBQTExRUE5NTcxQkEwOTUwNjlFQzAxIi8+IDwvcmRmOkRlc2NyaXB0aW9uPiA8L3JkZjpSREY+IDwveDp4bXBtZXRhPiA8P3hwYWNrZXQgZW5kPSJyIj8+/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoKDBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBMgFtAwERAAIRAQMRAf/EAJ8AAQACAwEBAQAAAAAAAAAAAAAFBgMEBwIBCAEBAQEBAAAAAAAAAAAAAAAAAAECAxAAAQQBAgMEBgUIBwMLBQEAAQACAwQFEQYhMRJBUWETcYEiMhQHkUJSYhWhcoKiIzNjg8GSQ1NzoySxNRfRssKTszRUZJQlFvBEpLSFJhEBAQEAAwACAgMBAQAAAAAAAAERITECQRJhcVGRoYGx/9oADAMBAAIRAxEAPwD9UoCAgICAgICAgICAgICD4XNCDy6VoGvYgg8nvvZ2LcWZHOUKjxzjmsxMd/VLtVLTEaPmvsd50r5F1s9nwtazYB9Bhjemrj6z5m7fe3qjgyjm66a/hd8cvTCE0w/4mYIc62UH/wDMvf0Qppj4fmptCPjPYs1h32KduEfTJE0Jpjao/MrY114jrZ6i+U8PKM8bX6/mOId+RNMWCK7BK0Oje17TxBaQQVUZRI0oPQIKAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIBICCNzW4sLhavxWVvQ0YNdGyTvazqd9loJ1cfAcUFZsfMS3ad0YLCWbkZ5Xrp/D63gR5rXWHD82EjxU1cRc9/e1t5dezkGNhPKvi67S8DxsW/O19UTUEVPhtvyAvyT7OZf1An8RsS2Wa6HlC53kt/RYEwZK82Goj/AEFCtUHZ5EMcf/MAVHuXcDyT0nh2alBgfnZyeB0QefxmwfrIAzM+o0OqDzPdgst6LdeKdva2VjXj9YFBpjEbZc7rhpfAS8/NoPkpu19NZ0X5VMNSVa3uCoG/he4rHs8ocjGy5H6C4eTP/moJmt8wNy0w0ZTDtvRfWtYqUPcPE15/Kf6mOeUMWTCb821l53Vat1rbzBrJRnDoLLR3mGUMk08dNFUWBsjXDgUHpAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAJAQQ2d3bhMKWR3LGtuUE16MLXTWpdP7uGMOeR3nTQdpCCqXM9u/K6EObtvHnm0eXZyLh4uPXWg/wAw+hRUTBWwGMnNqKM2ciffyNt7rNo/zpS5zR91ujfBXBhtbgkeSGuPqQaLrdybkD6Sg9x0rsrHa6828vQUGxFt+y/iQfWg2WbYkOmoHBBmG2iPDv0CD6duj/6CDE/AAHUc0GB+CeOI1QYJMVODy5INd1exGddOSA2zYiOoJCDJZkoZCIQ5KtHbY3izzGguae9jubT4tOqDdxmQ3Biun8GyXxdVvPGZR75Bp3R2vamZ+mJPUoLbhPmPi7U0dLKRvw+SkPSytb6QyR38CZpMUvoa7q7wFdMW5kjXDUFEekBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEGvfyFOhVlt3J2V60LS+WeVwYxrR2lx4IKPe3TnM60tw/Vh8Q8f72nYPi5hrzrV5BpG0jlJMNe5naoqIZJiMMJjTYTZsEG1bkcZbEzhwDppnkvf6zoOzRURdnL2LDiGk6HsCDHFStTniToewIJSHBxwwmay5kETB1PlkIaAO8k8Agw1s5gJZvIw9e1n5wdCcdCZYQfG04x1h/1imiZp4v5g3dRDj6GDg1HS+3I67MRx5wwGGNp/nFORtt+XO4LDtcju26G9sNCCrVZ9Lo7Ev+YmGtuP5W7fLdLdzKXD2mbJXQD+hFLGz9VMNeT8nfl0795ivNPfJPYefpdIUw15/wCDXy3Hu4djD3tkmafpDwmGvv8Awj2ewaVfj6Z7DXyN+PT1Cbp/ImGtWb5V3Yj1Y3dmWrkco5zXuR+sTwuf+umGtWztT5k0m61rOLzTW8eieOahKf043Wo9f5YTkRlvK38e0f8AyDb17Hs+vagYL9YeJfW65GjxfG1NHuocJl4TNjLcNuMcHGB7Xlp7nAHVp8CqNezhpGHVoQR7o54XcQeCDMbMNmu+pdiZaqSjpkglaHsI8QUG9iMnnsIQ7DzuyeNBHVh7cn7WNvb8LYedeH2JSR3OaoOgba3diM9Xc+rIWzxHps1JgY54X/Zljd7TT3dh5jUKonUBAQEBAQEBAQEBAQEBAQEBAQEBAQEBBC7j3TQwkUTZGvs3rRLKOOgAdPO8c+kEgBrfrPcQ1o5lBSbUdq7YZk9zysmnhcJKeLjJdTqOb7rgCAZph/ePHD6gb2xUZk9wyzuLYjoO13aVRHQ1LFh2p14n1lBJywYrEVBbytmOpByBefac48mtb7znHsa0EoNzGwbszIZ+C45uHxzx/vPKMd57h3xUmlr/AFyuZ+aVBYKHyrwJdHYzr5dwXWHrbLkSJImu/h1mhtdmnZozXxTDVxirwxMayNgaxo0a0DQADsAVRkKD4gICAgIPqAgEA80Fdzny/wBp5qwLlqi2PItGjMjWLq9pvonhLJPUTophqtW9o72w7dcdaZuSk08at4tr3Wt7mWWARSHwkY3xeio6rkMVk7D6D2SUctGNZMZcZ5NkAfWa0kiRn34y5virow3MM+PVzRqEEePNhdw1BCDI+OK3PHajnfQy8A6a2Tg08wDXXokB9mWMnmx/Du0PFBcdr7+ldbjw+4WMqZSTX4WxGT8LbA7YXO4h+nF0TvaHZ1DioYvIIcNRxBVQQEBAQEBAQEBAQEBAQEBAQEBAQCdEFb3Rut2PlixmNhbdzlpvXDWJLY4YtdDYsvGpZE0+tx4N7dAqGkOKfPds2HX81aGlvIyAB7mg6iKNo4RQsJ9lg9J1dqUVAXMhYuynUnp7AEG3jsQZB1PA0HFzzyAQeaGSymcndR2TWjsxMJZZ3JaB+AicOBbCG6OsvH3D0Dtcs7/C4um0/lhicPbGWvTS5ncDgQ/L3dHSNB5sgjH7OBn3WD0kqyJaujWNaNAFUfUBAKD4gICAg+gICAgICAgi8/tjBZ+q2vlajLDY3dcMh1bLE8cnxSNLXxu+80goKXkMFunbkZc3zdy4Zp46Bv4nAz0DpZaa39GT88qK1I2YvMUhexs7LFdxLRIzXg5p0cx7To5rmnm1w1HaqIizTlrv0I07kHl7qtyq6jkIhNWeQekkgtc06tcxw0c1zTxDgdQgsG2d5XcJYr4rPTm1jrDhFjs07getx0ZBa0GjZDybJyf4O5wx0tj2vaHNOoPaqj6gICAgICAgICAgICAgICAgICCt7s3Q/G+TjsbG21nrwd8HWcdGRsbwfZnI4tij149rjo0cSgp7jBhK8xM7reTuO83IZCTQSTy6aakDg1jeTGDg0IquSzz3Jy5xJBUEgI6GNoSZHJytr04QDJK7x4BrQOJLjwAHElUbuJ2dl94Bs+fikxe2NQ6vgQSyxaAPB95zTq1h/uGn889iz2a6jRx9WnXjr1omQQRNDIoo2hjGtHABrRoAFpGygICAgFB8QNEH1AQEBAQEBAQEBBUdybEFi3JmtvzNxmeI/aktJq2wOTLcTdOruEjfbb3keyZi6rtW5FkpJ8fcrOx+bpgG5jJHBz2tJ0bLE8ACWF/1Xt9B0dqElEVfx0ld+umo7CqMEb4pIZKluMT1J2mOaF41a5p5goJ7Z+6LWCuV8Hlp3WMZaIjw2UlOrursqWHn+1A/dv8ArjgfaHtQrprXNc0OadQeRVR9QEBAQEBAQEBAQEBAQEBAQQ26NxwYPHfEOjdYtSuENGlH+8sTu9yNvdy1c7k1oLjwCCjDzMXFZu5CZtnOZAh9+y3Xo1b7kEIPFsMQOjR28XHiSiq1YsS3J9TqePBQb+tDEUHZDIuLYmkNYxoLpJZHcGRRMHtPe48GtHNUTGydpzZ2eturcIY/oPXhcQ0h8NMcuuTThJZ7HHkzk3tJkha6cyMNCqNXL5fHYjHzZDIzsr1YRq58jmsBJ4NY0uIBc48GjtPBS3CR9xGWx+YxlbJ4+UT0rbBJDIAQdD2OadHNc08HNI1B4HikujbVBAQEBAQEBAQEBAQEBAQEBBBbq2lSz8ET/MdSytMl+NykIHmwPPp4PjdyfG72XD1FBTatqzPZmwmcgbUz9dvU+Nuvk2oRw+Jqk82H6zfeYeB7CZKqKyOPfXeSBq08iqNfpq26s2PusEtOw3pkYToe8OaRxa5p4tI4goLXsLdNqC1/8azc3m3Y2F+OvO0HxlYcOvhoPNj1DZW+hw4HhCugqoICAgICAgICAgICAgICDFZsw1oJJ55GxQxNL5ZHkNa1rRqXOJ5ABBzaPIOylt+67rDGx7HRYGu/XWGm7iZy0+7JZ0Dj2hnS37Siqzk8hLcsnQ8NeCDZrMpY+jNkshIIKdZhfNK7kAPAcSTyAHNUSO3toZ/L2IN23gK92sS/BYScAxRQOaWnz+BLZ5mni5v7vg3j7Wsw1dKM7WPmymOje0dZbmsQ4aSslA4yMaP7QDidOEjeI46a1E/8W2SibdMfFgxmSBkbmjzOGrWtc4ho6uXEoOK70zeNnq29w5HOSYTfODc+5hcFkGRxCKOLqBrVqtjrhtzWIiWfEROefMI6HNb7C5W/26SOl7Iw4wrcrj58vDk8jPdkydqGKNtcVxePUGiuJJXMbI+N79XH2nl58BvzMYtWZaQQEBAQEBAQEBAQEBAQEBAQEEHuzatTcNFkbpHVMjVd52MyUYBlrTgaB7deBBHB7Twc3gUwUyjbmyHxWLysLaufx2jb9Vp1Y5rtfLswE8XRS6aj7J1aeIUlVC3qj68xGnDsKoxzV3X6rImTGtfrPFjHXBzhnbqGnxa4Ete3taSEHR9ibqGdxX+oYK+TquNfIVNeoxTsA6m69rTqHMd2tIKRKsyAgICAgICAgICAgICAUFD3pdGayrNsRu1x9drLe4XdjoySYKmv8ZzS6QfYGn11FVjc+WMspiYfZHMBUaOIoOmkBI9KCT21iW7tzjbj2k7awk2lJv1Ll2M6OmP2o4HDpj7C/V31Qp2OtQxNY0AdnJVGlkcZI+cZCgWxZOJvSHHgyaManyZtPq6n2Xc2niO0EI+tc8h016pG8QB5/FsYRrLBLzdKxoJ115uDeDx7TePvBvZmtaymHc3E3Ia1qXofTyLomWWxakazRMcehzxGXeWTq3q01BGoMqxzXEy5PbU+TpYy6yPaFS26fN7yyDGG4bAc7z64c4tFyXzAyHziz2P3Ya9zfZ5zj9NduqYzIR5GhBeiimhisN6447EboZQ08uuN4D2Ejjo4A966xhsoCAgICAgICAgICAgICAgICAgqu+dsWchFDmcOA3cWKDnU9T0tsRHQy05T9iXTgfqu0d2KVYrLZqWcxMORphwjlB1jkHTJFIwlskUjfqvY8Frh3hUQDg+CUg8wUGeHKOwmXr7kjf0VXdFXOs7DCTpDZPjA52jj9gn7IUHZK8zJomyNOocFUZEBAQEBAQEBAQEBAQRe5c5XweFt5OdrpG12ashZ78sjiGxRM+9I9wa3xKDnpFjEYZ5uSCXL3nut5OYcQ6zKB1Bv3I2gRs+60IqrsD7NjXXUkqCRvQW7NintbGvMV7JtMl6yz3q9FhAleD2Pk18uPxJP1Uo63gsPSxWNr0KULYKtaNsUMTBo1rGDRoHqVQy2QgZHJTimlF+RmscdRrZJ268n9Lg5jRr2yaNQV5mZ39+LR46GtSsgBr7TpA+F8ETidDK6N80fW7Q9LWE+gBBZMhjnyyNuU3iDIxN6WSHUskYDr5UoHNvd2t5jt1CMqXjUdLPDE9ldjj+KY33pK0jjqZotPejdxcQ3n7zePUCHndm1BuQYq1Xy1nHSYyf4yrLUbWna9zmFod5dmKxEXNa4+W7p9nXULNmrLjmmJ3NujbkF/MTuzO5M3c8uNuKvSCvQoOnLfIqukZEyOa9I5zWvZWiPS53ToxoL1iWxvNda27n6eWp6NtU5snVbHHl61Kwyy2tZLAXxFzePB2oHUAT3LpLrFiVVQQEBAQEBAQEBAQEBAQEBAQEHOd00G7Z3E3MxAMwGelZBl2fVgvv0ZBb7mtm4RSfe6Hd6io3PUOhxkA468VRF1XxnrhnYJIJmmOWNw1a5jho4EdxCC2fLDMSwts7ZuSmSxi+n4WR3vS0pNfh3k9paGmJx+03XtUhXQFUEBAQEBAQEBAQEBBQd0225XdtXFgk0sExuRvAe661L1NqRn8xofKR39BUVT9yZB1m05rTq0KjzjBWqVZshbeI6tVjpppDyaxg6ifUAgtvyuwdn4WxuLJROjyebc2d8L/egrtGlev4dDDq775cpCrdJYtX5n1aEhgrQuLLV0DVxeODoodeHU36z+IHIcdemo3qVCpSi8qtGGNJ1e7iXOd2ue46uc495OqD5Xx9WC3atRNImuFjp3EkgmNgY3QHgPZHYg2EGjksa6w5lqq8QZGAEQz6agtPExyD6zHd3ZzHFBEUMk2g6U+WYacbv/cKJ4upPdqfNZp71d/PUcuf2g0M+8tu0twYMxPowZOxXJtY2CzLJFXNkRvjYZHxau6C2RwcNDq0ngs+pqyuY4He+1NnYbIYHFD8LyNe3Iy7lb9eA15brXhhD6NKx8ZWhlDRHX6oWtazo6Q4aB2J6k4bstdZwObZk6Nd0zG1MqatazkMS57XT1HWWdQjlaNHD2muaCQNekrpKxYk1UEBAQEBAQEBAQEBAQEBAQEGpl8VRy+LtYy9GJadyJ0M8Z7WvGh07j3FBzXDOuSU7mEyjzLmMFL8HbmcNDPH09Vaz/Oi0J+91DsUioazC6CwW6clR6lvnG28duKN3SMe/yMie+lYcGvJ/wnhknoDu9SjtFaYTQMkB11CqMiAgICAgICAgICDXyF2vRo2Ltl/l160b5pnn6rI2lzj6gEHL6s1mtgpsjeHTkszM+/aYebPO0EUR/wAGBrI/SFIqrBpsWdeepQSk2MOYyuN2swEwOLMjmT9X4aJ/7KE/40zeX2WuSjquRM8FCKnUd5dq68VoZPsatLpJPSyNjnDx0VRJ1a