Теорема века. Мир Ñ Ñ‚Ð¾Ñ‡ÐºÐ¸ Ð·Ñ€ÐµÐ½Ð¸Ñ Ð¼Ð°Ñ‚ÐµÐ¼Ð°Ñ‚Ð¸ÐºÐ¸
аксиомы геометрии (я не говорю об аксиомах арифметики) суть не более чем замаскированные определения.
Если теперь мы обратимся к вопросу, является ли евклидова геометрия истинной, то найдем, что он не имеет смысла. Это было бы все равно что спрашивать, какая система истинна – метрическая или же система со старинными мерами, или какие координаты вернее – декартовы или же полярные. Никакая геометрия не может быть более истинна, чем другая; та или иная геометрия может быть только более удобной. И вот, евклидова геометрия есть и всегда будет наиболее удобной по следующим причинам:
1. Она проще всех других; притом она является таковой не только вследствие наших умственных привычек, не вследствие какой-то, я не знаю, непосредственной интуиции, которая нам свойственна по отношению к евклидову пространству; она наиболее проста и сама по себе, подобно тому как многочлен первой степени проще многочлена второй степени; формулы сферической тригонометрии сложнее формул прямолинейной тригонометрии, и они показались бы еще более сложными для аналитика, который не был бы знаком с геометрическими обозначениями.
2. Она в достаточной степени согласуется со свойствами реальных твердых тел, к которым приближаются части нашего организма и наш глаз и на свойстве которых мы строим наши измерительные приборы.
Глава IV. Пространство и геометрия
Начнем с маленького парадокса.
Существа, разум которых был бы подобен нашему и которые имели бы такие же органы чувств, как и мы, но которые не получили бы никакого предварительного воспитания, могли бы получить от соответственно подобранного внешнего мира такие впечатления, что им пришлось бы построить геометрию иную, чем евклидова, и разместить явления этого внешнего мира в пространстве неевклидовом или даже в пространстве четырех измерений.
Для нас, ум которых сформировался под влиянием окружающего нас мира, не составило бы никакой трудности отнести к нашему евклидову пространству явления этого нового мира, если бы мы были в него внезапно перенесены. И, напротив, если бы существа из того мира были перенесены к нам, они должны были бы отнести наши явления к неевклидову пространству.
Но ведь с небольшими усилиями этого же могли бы достигнуть и мы.
Тот, кто всю свою жизнь посвятил бы такой задаче, может быть, оказался бы в состоянии представить себе четвертое измерение.
Пространство геометрическое и пространство представлений. Часто говорят, что образы внешних предметов локализованы в пространстве, что они даже не могут образоваться иначе, как при этом условии. Говорят также, что это пространство, которое таким образом служит готовым кадром наших ощущений и представлений, тождественно с пространством геометров, всеми свойствами которого оно обладает.
Всем, кто так думает, предыдущая фраза должна показаться крайне странной. Но надо рассмотреть, не обманываются ли они некоторой иллюзией, которую более глубокий анализ мог бы рассеять.
Каковы,