Spencer Herbert

Illustrations of Universal Progress: A Series of Discussions


Скачать книгу

changes not to a force, but to the absence of a force. And this is true. Strictly speaking, the changes should be attributed to those forces which come into action when the antagonist force is withdrawn. But though there is an inaccuracy in saying that the freezing of water is due to the loss of its heat, no practical error arises from it; nor will a parallel laxity of expression vitiate our statements respecting the multiplication of effects. Indeed, the objection serves but to draw attention to the fact, that not only does the exertion of a force produce more than one change, but the withdrawal of a force produces more than one change. And this suggests that perhaps the most correct statement of our general principle would be its most abstract statement—every change is followed by more than one other change.

      Returning to the thread of our exposition, we have next to trace out, in organic progress, this same all-pervading principle. And here, where the evolution of the homogeneous into the heterogeneous was first observed, the production of many changes by one cause is least easy to demonstrate. The development of a seed into a plant, or an ovum into an animal, is so gradual, while the forces which determine it are so involved, and at the same time so unobtrusive, that it is difficult to detect the multiplication of effects which is elsewhere so obvious. Nevertheless, guided by indirect evidence, we may pretty safely reach the conclusion that here too the law holds.

      Observe, first, how numerous are the effects which any marked change works upon an adult organism—a human being, for instance. An alarming sound or sight, besides the impressions on the organs of sense and the nerves, may produce a start, a scream, a distortion of the face, a trembling consequent upon a general muscular relaxation, a burst of perspiration, an excited action of the heart, a rush of blood to the brain, followed possibly by arrest of the heart's action and by syncope: and if the system be feeble, an indisposition with its long train of complicated symptoms may set in. Similarly in cases of disease. A minute portion of the small-pox virus introduced into the system, will, in a severe case, cause, during the first stage, rigors, heat of skin, accelerated pulse, furred tongue, loss of appetite, thirst, epigastric uneasiness, vomiting, headache, pains in the back and limbs, muscular weakness, convulsions, delirium, &c.; in the second stage, cutaneous eruption, itching, tingling, sore throat, swelled fauces, salivation, cough, hoarseness, dyspnœa, &c.; and in the third stage, œdematous inflammations, pneumonia, pleurisy, diarrhœa, inflammation of the brain, ophthalmia, erysipelas, &c.: each of which enumerated symptoms is itself more or less complex. Medicines, special foods, better air, might in like manner be instanced as producing multiplied results.

      Now it needs only to consider that the many changes thus wrought by one force upon an adult organism, will be in part paralleled in an embryo organism, to understand how here also, the evolution of the homogeneous into the heterogeneous may be due to the production of many effects by one cause. The external heat and other agencies which determine the first complications of the germ, may, by acting upon these, superinduce further complications; upon these still higher and more numerous ones; and so on continually: each organ as it is developed serving, by its actions and reactions upon the rest, to initiate new complexities. The first pulsations of the fœtal heart must simultaneously aid the unfolding of every part. The growth of each tissue, by taking from the blood special proportions of elements, must modify the constitution of the blood; and so must modify the nutrition of all the other tissues. The heart's action, implying as it does a certain waste, necessitates an addition to the blood of effete matters, which must influence the rest of the system, and perhaps, as some think, cause the formation of excretory organs. The nervous connections established among the viscera must further multiply their mutual influences: and so continually.

      Still stronger becomes the probability of this view when we call to mind the fact, that the same germ may be evolved into different forms according to circumstances. Thus, during its earlier stages, every embryo is sexless—becomes either male or female as the balance of forces acting upon it determines. Again, it is a well-established fact that the larva of a working-bee will develop into a queen-bee, if, before it is too late, its food be changed to that on which the larvæ of queen-bees are fed. Even more remarkable is the case of certain entozoa. The ovum of a tape-worm, getting into its natural habitat, the intestine, unfolds into the well-known form of its parent; but if carried, as it frequently is, into other parts of the system, it becomes a sac-like creature, called by naturalists the Echinococcus—a creature so extremely different from the tape-worm in aspect and structure, that only after careful investigations has it been proved to have the same origin. All which instances imply that each advance in embryonic complication results from the action of incident forces upon the complication previously existing.

      Indeed, we may find à priori reason to think that the evolution proceeds after this manner. For since it is now known that no germ, animal or vegetable, contains the slightest rudiment, trace, or indication of the future organism—now that the microscope has shown us that the first process set up in every fertilized germ, is a process of repeated spontaneous fissions ending in the production of a mass of cells, not one of which exhibits any special character: there seems no alternative but to suppose that the partial organization at any moment subsisting in a growing embryo, is transformed by the agencies acting upon it into the succeeding phase of organization, and this into the next, until, through ever-increasing complexities, the ultimate form is reached. Thus, though the subtilty of the forces and the slowness of the results, prevent us from directly showing that the stages of increasing heterogeneity through which every embryo passes, severally arise from the production of many changes by one force, yet, indirectly, we have strong evidence that they do so.

      We have marked how multitudinous are the effects which one cause may generate in an adult organism; that a like multiplication of effects must happen in the unfolding organism, we have observed in sundry illustrative cases; further, it has been pointed out that the ability which like germs have to originate unlike forms, implies that the successive transformations result from the new changes superinduced on previous changes; and we have seen that structureless as every germ originally is, the development of an organism out of it is otherwise incomprehensible. Not indeed that we can thus really explain the production of any plant or animal. We are still in the dark respecting those mysterious properties in virtue of which the germ, when subject to fit influences, undergoes the special changes that begin the series of transformations. All we aim to show, is, that given a germ possessing these mysterious properties, the evolution of an organism from it, probably depends upon that multiplication of effects which we have seen to be the cause of progress in general, so far as we have yet traced it.

      When, leaving the development of single plants and animals, we pass to that of the Earth's flora and fauna, the course of our argument again becomes clear and simple. Though, as was admitted in the first part of this article, the fragmentary facts Palæontology has accumulated, do not clearly warrant us in saying that, in the lapse of geologic time, there have been evolved more heterogeneous organisms, and more heterogeneous assemblages of organisms, yet we shall now see that there must ever have been a tendency towards these results. We shall find that the production of many effects by one cause, which, as already shown, has been all along increasing the physical heterogeneity of the Earth, has further involved an increasing heterogeneity in its flora and fauna, individually and collectively. An illustration will make this clear.

      Suppose that by a series of upheavals, occurring, as they are now known to do, at long intervals, the East Indian Archipelago were to be, step by step, raised into a continent, and a chain of mountains formed along the axis of elevation. By the first of these upheavals, the plants and animals inhabiting Borneo, Sumatra, New Guinea, and the rest, would be subjected to slightly modified sets of conditions. The climate in general would be altered in temperature, in humidity, and in its periodical variations; while the local differences would be multiplied. These modifications would affect, perhaps inappreciably, the entire flora and fauna of the region. The change of level would produce additional modifications: varying in different species, and also in different members of the same species, according to their distance from the axis of elevation. Plants, growing only on the sea-shore in special localities, might become extinct. Others, living only in swamps of a certain humidity, would, if they survived at all, probably undergo visible changes of appearance. While still greater alterations would occur in the plants gradually spreading over the lands newly raised above the sea. The animals and insects living on these modified