George P. Marsh

Man and Nature; Or, Physical Geography as Modified by Human Action


Скачать книгу

means of scientific observation assure us that the chalk beds of England and of France, the coral reefs of marine waters in warm climates, vast calcareous and silicious deposits in the sea and in many fresh-water ponds, the common polishing earths and slates, and many species of apparently dense and solid rock, are the work of the humble organisms of which I speak, often, indeed, of animalculæ so small as to become visible only by the aid of lenses magnifying a hundred times the linear measures. It is popularly supposed that animalculæ, or what are commonly embraced under the vague name of infusoria, inhabit the water alone, but the atmospheric dust transported by every wind and deposited by every calm is full of microscopic life or of its relics. The soil on which the city of Berlin stands, contains at the depth of ten or fifteen feet below the surface, living elaborators of silex;[108] and a microscopic examination of a handful of earth connected with the material evidences of guilt has enabled the naturalist to point out the very spot where a crime was committed. It has been computed that one sixth part of the solid matter let fall by great rivers at their outlets consists of still recognizable infusory shells and shields, and, as the friction of rolling water must reduce much of these fragile structures to a state of comminution which even the microscope cannot resolve into distinct particles and identify as relics of animal or of vegetable life, we must conclude that a considerably larger proportion of river deposits is really the product of animalcules.[109]

      It is evident that the chemical, and in many cases the mechanical character of a great number of the objects important in the material economy of human life, must be affected by the presence of so large an organic element in their substance, and it is equally obvious that all agricultural and all industrial operations tend to disturb the natural arrangements of this element, to increase or to diminish the special adaptation of every medium in which it lives to the particular orders of being inhabited by it. The conversion of woodland into pasturage, of pasture into plough land, of swamp or of shallow sea into dry ground, the rotations of cultivated crops, must prove fatal to millions of living things upon every rood of surface thus deranged by man, and must, at the same time, more or less fully compensate this destruction of life by promoting the growth and multiplication of other tribes equally minute in dimensions.

      I do not know that man has yet endeavored to avail himself, by artificial contrivances, of the agency of these wonderful architects and manufacturers. We are hardly well enough acquainted with their natural economy to devise means to turn their industry to profitable account, and they are in very many cases too slow in producing visible results for an age so impatient as ours. The over-civilization of the nineteenth century cannot wait for wealth to be amassed by infinitesimal gains, and we are in haste to speculate upon the powers of nature, as we do upon objects of bargain and sale in our trafficking one with another. But there are still some cases where the little we know of a life, whose workings are invisible to the naked eye, suggests the possibility of advantageously directing the efforts of troops of artisans that we cannot see. Upon coasts occupied by the corallines, the reef-building animalcule does not work near the mouth of rivers. Hence the change of the outlet of a stream, often a very easy matter, may promote the construction of a barrier to coast navigation at one point, and check the formation of a reef at another, by diverting a current of fresh water from the former and pouring it into the sea at the latter. Cases may probably be found in tropical seas, where rivers have prevented the working of the coral animalcules in straits separating islands from each other or from the mainland. The diversion of such streams might remove this obstacle, and reefs consequently be formed which should convert an archipelago into a single large island, and finally join that to the neighboring continent.

      Quatrefages proposed to destroy the teredo in harbors by impregnating the water with a mineral solution fatal to them. Perhaps the labors of the coralline animals might be arrested over a considerable extent of sea coast by similar means. The reef builders are leisurely architects, but the precious coral is formed so rapidly that the beds may be refished advantageously as often as once in ten years.[110] It does not seem impossible that this coral might be transplanted to the American coast, where the Gulf stream would furnish a suitable temperature beyond the climatic limits that otherwise confine its growth; and thus a new source of profit might perhaps be added to the scanty returns of the hardy fisherman.

      In certain geological formations, the diatomaceæ deposit, at the bottom of fresh-water ponds, beds of silicious shields, valuable as a material for a species of very light firebrick, in the manufacture of water glass and of hydraulic cement, and ultimately, doubtless, in many yet undiscovered industrial processes. An attentive study of the conditions favorable to the propagation of the diatomaceæ might perhaps help us to profit directly by the productivity of this organism, and, at the same time, disclose secrets of nature capable of being turned to valuable account in dealing with silicious rocks, and the metal which is the base of them. Our acquaintance with the obscure and infinitesimal life of which I have now been treating is very recent, and still very imperfect. We know that it is of vast importance in the economy of nature, but we are so ambitious to grasp the great, so little accustomed to occupy ourselves with the minute, that we are not yet prepared to enter seriously upon the question how far we can control and direct the operations, not of unembodied physical forces, but of beings, in popular apprehension, almost as immaterial as they.

      Nature has no unit of magnitude by which she measures her works. Man takes his standards of dimension from himself. The hair's breadth was his minimum until the microscope told him that there are animated creatures to which one of the hairs of his head is a larger cylinder than is the trunk of the giant California redwood to him. He borrows his inch from the breadth of his thumb, his palm and span from the width of his hand and the spread of his fingers, his foot from the length of the organ so named; his cubit is the distance from the tip of his middle finger to his elbow, and his fathom is the space he can measure with his outstretched arms. To a being who instinctively finds the standard of all magnitudes in his own material frame, all objects exceeding his own dimensions are absolutely great, all falling short of them absolutely small. Hence we habitually regard the whale and the elephant as essentially large and therefore important creatures, the animalcule as an essentially small and therefore unimportant organism. But no geological formation owes its origin to the labors or the remains of the huge mammal, while the animalcule composes, or has furnished, the substance of strata thousands of feet in thickness, and extending, in unbroken beds, over many degrees of terrestrial surface. If man is destined to inhabit the earth much longer, and to advance in natural knowledge with the rapidity which has marked his progress in physical science for the last two or three centuries, he will learn to put a wiser estimate on the works of creation, and will derive not only great instruction from studying the ways of nature in her obscurest, humblest walks, but great material advantage from stimulating her productive energies in provinces of her empire hitherto regarded as forever inaccessible, utterly barren.[111]

       Table of Contents

       Table of Contents

      THE HABITABLE EARTH ORIGINALLY WOODED—THE FOREST DOES NOT FURNISH FOOD FOR MAN—FIRST REMOVAL OF THE WOODS—EFFECTS OF FIRE ON FOREST SOIL—EFFECTS OF THE DESTRUCTION OF THE FOREST—ELECTRICAL INFLUENCE OF TREES—CHEMICAL INFLUENCE OF THE FOREST.

      INFLUENCE OF THE FOREST, CONSIDERED AS INORGANIC MATTER, ON TEMPERATURE: a, ABSORBING AND EMITTING SURFACE; b, TREES AS CONDUCTORS OF HEAT; c, TREES IN SUMMER AND IN WINTER; d, DEAD PRODUCTS OF TREES; e, TREES AS A SHELTER TO GROUNDS TO THE LEEWARD OF THEM; f, TREES AS A PROTECTION AGAINST MALARIA—THE FOREST, AS INORGANIC MATTER, TENDS TO MITIGATE EXTREMES.

      TREES AS ORGANISMS: SPECIFIC TEMPERATURE—TOTAL INFLUENCE OF THE FOREST ON TEMPERATURE.

      INFLUENCE OF FORESTS ON THE HUMIDITY OF THE AIR AND THE EARTH: a, AS INORGANIC MATTER; b, AS ORGANIC—WOOD MOSSES AND FUNGI—FLOW OF SAP—ABSORPTION AND EXHALATION OF MOISTURE BY TREES—BALANCE OF CONFLICTING INFLUENCES—INFLUENCE OF THE FOREST ON TEMPERATURE