Charles Darwin

The Power of Movement in Plants


Скачать книгу

      We next experimented on nearly a score of radicles by allowing them to grow downwards over inclined plates of smoked glass, in exactly the same manner as with Aesculus and Phaseolus. Some of the plates were inclined only a few degrees beneath the horizon, but most of them between 60o and 75o. In the latter cases the radicles in growing downwards were deflected only a little from the direction which they had followed whilst germinating in sawdust, and they pressed lightly on the glass-plates (Fig. 21). Five of the most distinct tracks are here copied, and they are all slightly sinuous, showing circumnutation. Moreover, a close examination of almost every one of the tracks clearly showed that the tips in their downward course had alternately pressed with greater or less force on the plates, and had sometimes risen up so as nearly to leave them for short intervals. The distance between the extreme right and left positions of the radicle A was 0.7 mm., ascertained in the same manner as in the case of Phaseolus.

      Epicotyl.—At the point where the radicle had protruded from a bean laid on its side, a flattened solid lump projected .1 of an inch, in the same horizontal plane with the bean. This protuberance consisted of the convex summit of the arched epicotyl; and as it became developed the two legs of the arch curved themselves laterally upwards, owing to apogeotropism, at such a rate that the arch stood highly inclined after 14 h., and vertically in 48 h. A filament was fixed to the crown of the protuberance before any arch was visible, but the basal half grew so quickly that on the second morning the end of the filament was bowed greatly downwards. It was therefore removed and fixed lower down. The line traced during these two days extended in the same general direction, and was in parts nearly straight, and in others plainly zigzag, thus giving some evidence of circumnutation.

      As the arched epicotyl, in whatever position it may be placed, bends quickly upwards through apogeotropism, and as the two legs tend at a very early age to separate from one another, as soon as they are relieved from the pressure of the surrounding earth, it was difficult to ascertain positively whether the epicotyl, whilst remaining arched, circumnutated. Therefore some rather deeply buried beans were uncovered, and the two legs of the arches were tied together, as had been done with the epicotyl of Tropaeolum and the hypocotyl of the Cabbage. The movements of the tied arches were traced in the usual manner on [page 32] two occasions during three days. But the tracings made under such unnatural conditions are not worth giving; and it need only be said that the lines were decidedly zigzag, and that small loops were occasionally formed. We may therefore conclude that the epicotyl circumnutates whilst still arched and before it has grown tall enough to break through the surface of the ground.

      In order to observe the movements of the epicotyl at a somewhat more advanced age, a filament was fixed near the base of one which was no longer arched, for its upper half now formed a right angle with the lower half. This bean had germinated on bare damp sand, and the epicotyl began to straighten itself much sooner than would have occurred if it had been properly planted. The course pursued during 50 h. (from 9 A.m. Dec. 26th, to 11 A.m. 28th) is here shown (Fig. 22); and we see Fig. 22. Vicia faba: circumnutation of young epicotyl, traced in darkness during 50 hours on a horizontal glass. Movement of bead of filament magnified 20 times, here reduced to one-half of original scale.

      that the epicotyl circumnutated during the whole time. Its basal part grew so much during the 50 h. that the filament at the end of our observations was attached at the height of .4 inch above the upper surface of the bean, instead of close to it. If the bean had been properly planted, this part of the epicotyl would still have been beneath the soil.

      Late in the evening of the 28th, some hours after the above observations were completed, the epicotyl had grown much straighter, for the upper part now formed a widely open angle with the lower part. A filament was fixed to the upright basal part, higher up than before, close beneath the lowest scale-like process or homologue of a leaf; and its movement was traced [page 33] during 38 h. (Fig. 23). We here again have plain evidence of continued circumnutation. Had the bean been properly planted, the part of the epicotyl to which the filament was attached, the

      Fig. 23. Vicia faba: circumnutation of the same epicotyl as in Fig. 22, a little more advanced in age, traced under similar conditions as before, from 8.40 A.m. Dec. 28th, to 10.50 A.m. 30th. Movement of bead here magnified 20 times.

      movement of which is here shown, would probably have just risen above the surface of the ground.

      Lathyrus nissolia (Leguminosae).—This plant was selected for observation from being an abnormal form with grass-like leaves.

      Fig. 24. Lathyrus nissolia: circumnutation of stem of young seedling, traced in darkness on a horizontal glass, from 6.45 A.m. Nov. 22nd, to 7 A.m. 23rd. Movement of end of leaf magnified about 12 times, here reduced to one-half of original scale.

      The cotyledons are hypogean, and the epicotyl breaks through the ground in an arched form. The movements of a stem, 1.2 inch in height, consisting of three internodes, the lower one almost wholly subterranean, and the upper one bearing a short, [page 34] narrow leaf, is shown during 24 h., in Fig. 24. No glass filament was employed, but a mark was placed beneath the apex of the leaf. The actual length of the longer of the two ellipses described by the stem was about .14 of an inch. On the previous day the chief line of movement was nearly at right angles to that shown in the present figure, and it was more simple.

      Cassia tora* (Leguminosae).—A seedling was placed before a

      Fig. 25. Cassia tora: conjoint circumnutation of cotyledons and hypocotyl, traced on vertical glass, from 7.10 A.m. Sept. 25th to 7.30 A.m. 26th. Figure here given reduced to one-half of original scale.

      * Seeds of this plant, which grew near the sea-side, were sent to us by Fritz Müller from S. Brazil. The seedlings did not flourish or flower well with us; they were sent to Kew, and were pronounced not to be distinguishable from C. tora. [page 35]

      north-east window; it bent very little towards it, as the hypocotyl which was left free was rather old, and therefore not highly heliotropic. A filament had been fixed to the midrib of one of the cotyledons, and the movement of the whole seedling was traced during two days. The circumnutation of the hypocotyl is quite insignificant compared with that of the cotyledons. These rise up vertically at night and come into close contact; so that they may be said to sleep. This seedling was so old that a very small true leaf had been developed, which at night was completely hidden by the closed cotyledons. On Sept. 24th, between 8 A.m. and 5 P.m., the cotyledons moved five times up and five times down; they therefore described five irregular ellipses in the course of the 9 h. The great nocturnal rise commenced about 4.30 P.m.

      On the following morning (Sept. 25th) the movement of the same cotyledon was again traced in the same manner during 24 h.; and a copy of the tracing is here given (Fig. 25). The morning was cold, and the window had been accidentally left open for a short time, which must have chilled the plant; and this probably prevented it from moving quite as freely as on the previous day; for it rose only four and sank only four times during the day, one of the oscillations being very small. At 7.10 A.m., when the first dot was made, the cotyledons were not fully open or awake; they continued to open till about 9 A.m., by which time they had sunk a little beneath the horizon: by 9.30 A.m. they had risen, and then they oscillated up and down; but the upward and downward lines never quite coincided. At about 4.30 P.m. the great nocturnal rise commenced. At 7 A.m. on the following morning (Sept. 26th) they occupied nearly the same level as on the previous morning, as shown in the diagram: they then began to open or sink in the usual manner. The diagram leads to the belief that the great periodical daily rise and fall does not differ essentially, excepting in amplitude, from the oscillations during the middle of the day.

      Lotus Jacoboeus (Leguminosae).—The cotyledons of this plant, after the few first days of their life, rise so as to stand almost, though rarely quite, vertically at night. They continue to act in this manner for a long time even after the development of some of the true leaves. With seedlings, 3 inches in height, and bearing five or six leaves, they rose at night about 45o. They continued to act thus for about an additional fortnight. Subsequently they remained horizontal at night, though still green [page 36] and at last dropped off. Their rising at night so as to stand almost vertically appears to depend largely on temperature; for when the seedlings were kept in a cool house, though they still continued to grow, the cotyledons did not become vertical at night. It is