нарушение как структуры, так и функций генов, иногда прямо приводящие к утере организмом каких-либо из них, ученые поставили вопрос о том, как именно клетки способны существовать с этой поврежденной ДНК. Циммер писал: «Никто не может использовать излучения без понимания механизмов их действия, и также никто не может обнаружить какие-либо вызванные излучениями изменения, не заинтересовавшись нормальным состоянием исследуемого материала».
К сожалению, начало Второй мировой войны сказалось и на развитии фундаментальной науки в Германии, многие ученые вынуждены были эмигрировать, замечательное научное братство физиков и генетиков распалось.
1.2. Репликация ДНК
Для того чтобы начать серьезный разговор о репарации, необходимо вспомнить основные детали репликации ДНК. Важно понимать, что все процессы ДНК-метаболизма тесно связаны между собой и белки, вовлеченные в репликацию и рекомбинацию ДНК, способны принимать участие в различных процессах репарации. Для наглядности рассмотрим схему процесса репликации у прокариот, представленную на рис. 1.
Рисунок 1. Схема репликации ДНК у E.coli. На панели а схематически показаны белки в Y– раскрученной вилке репликации ДНК, но в реальности вилка репликации свернута в трех измерениях и образует структуру, подобную той, что изображена на вставке б.
Сфокусируемся на схематическом изображении а. В репликативной вилке одновременно активны две молекулы ДНК-полимеразы. Одна движется постоянно, производя новую дочернюю молекулу ДНК на ведущей нити, тогда как другая производит длинную серию коротких фрагментов Оказаки на отстающей нити. Обе полимеразы «заякорены» на их матрице с помощью ассоциированных с ними белков в виде «скользящего зажима» (sliding clump) и «загрузчика зажима» (clump loader).
ДНК-геликаза, активированная энергией АТФ-гидролиза, быстро движется вдоль одной из матричных нитей (на рис. 1 – ведущая нить), раскрывая ДНК-спираль прямо перед репликативной вилкой. ДНК-геликаза предоставляет основания ДНК-спирали ДНК-полимеразе ведущей нити, чтобы та могла их копировать. Ферменты ДНК-топоизомеразы облегчают раскручивание спирали ДНК.
В дополнение к матрице, ДНК-полимераза нуждается в праймере, «затравке», существующей до начала собственно самого основного процесса синтеза ДНК, небольшой цепи ДНК или РНК с концом, к которому и присоединяется следующий нуклеотид. По этой причине ДНК-полимераза отстающей нити нуждается в действии фермента ДНК-праймазы перед тем, как она начнет синтез каждого нового фрагмента Оказаки. Праймаза производит очень короткую молекулу РНК (как РНК-праймер) в качестве 5’-конца каждого фрагмента Оказаки, к которому ДНК-полимераза и будет достраивать нуклеотиды. Наконец, однонитевые участки ДНК внутри вилки покрыты множеством копий SSB белка (связывающего однонитевую ДНК, single strand binding), занимая открытую область ДНК на нитях-матрицах с их подготовленными для копирования основаниями.
В представленной