Александр Богданов

Устойчивость организационных форм


Скачать книгу

низов.

      5

      Огромное большинство нынешних математиков совершенно не в состоянии представить себе, что «площадь» есть не что иное, как тело безконечно-малой, или просто игнорируемой толщины, а «линия» – тело игнорируемой толщины и ширины. Такова еще сила схоластически-абстрактного мышления. Между тем достаточно сообразить следующее. Площадь только двух измерений, которую они, якобы, «мыслят», равно как и линия только одного измерения, не могут существовать в восприятии, ибо они невидимы и неосязаемы; не могут поэтому существовать в представлении, потому что оно есть след восприятий; не могут тем самым существовать и в понятии, т.-е. «мыслиться», потому что материалом понятий служат представления. На деле, конечно, математики «мыслят» не то, что говорят в своих словесно-противоречивых определениях, а совсем иное – площади и линии, доступные зрению и зрительному представлению.

/9j/4AAQSkZJRgABAQIAHAAcAAD/4R9JRXhpZgAATU0AKgAAAAgABwESAAMAAAABAAEAAAEaAAUA AAABAAAAYgEbAAUAAAABAAAAagEoAAMAAAABAAMAAAExAAIAAABJAAAAcgEyAAIAAAAUAAAAu4dp AAQAAAABAAAA0AAAAPwAAAAcAAAAAQAAABwAAAABQWRvYmUgUGhvdG9zaG9wIENTNiAoMTMuMCAy MDEyMDMwNS5tLjQxNSAyMDEyLzAzLzA1OjIxOjAwOjAwKSAgKFdpbmRvd3MpADIwMTI6MDc6MjMg MTE6NTE6MTgAAAADoAEAAwAAAAH//wAAoAIABAAAAAEAAASwoAMABAAAAAEAAAb1AAAAAAAAAAYB AwADAAAAAQAGAAABGgAFAAAAAQAAAUoBGwAFAAAAAQAAAVIBKAADAAAAAQADAAACAQAEAAAAAQAA AVoCAgAEAAAAAQAAHecAAAAAAAAAHAAAAAEAAAAcAAAAAf/Y/+IMWElDQ19QUk9GSUxFAAEBAAAM SExpbm8CEAAAbW50clJHQiBYWVogB84AAgAJAAYAMQAAYWNzcE1TRlQAAAAASUVDIHNSR0IAAAAA AAAAAAAAAAEAAPbWAAEAAAAA0y1IUCAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAARY3BydAAAAVAAAAAzZGVzYwAAAYQAAABsd3RwdAAAAfAAAAAUYmtwdAAA AgQAAAAUclhZWgAAAhgAAAAUZ1hZWgAAAiwAAAAUYlhZWgAAAkAAAAAUZG1uZAAAAlQAAABwZG1k ZAAAAsQAAACIdnVlZAAAA0wAAACGdmlldwAAA9QAAAAkbHVtaQAAA/gAAAAUbWVhcwAABAwAAAAk dGVjaAAABDAAAAAMclRSQwAABDwAAAgMZ1RSQwAABDwAAAgMYlRSQwAABDwAAAgMdGV4dAAAAABD b3B5cmlnaHQgKGMpIDE5OTggSGV3bGV0dC1QYWNrYXJkIENvbXBhbnkAAGRlc2MAAAAAAAAAEnNS R0IgSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAADzUQABAAAAARbM WFlaIAAAAAAAAAAAAAAAAAAAAABYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABimQAAt4UA ABjaWFlaIAAAAAAAACSgAAAPhAAAts9kZXNjAAAAAAAAABZJRUMgaHR0cDovL3d3dy5pZWMuY2gA AAAAAAAAAAAAABZJRUMgaHR0cDovL3d3dy5pZWMuY2gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAuSUVDIDYxOTY2LTIuMSBEZWZhdWx0IFJH QiBjb2xvdXIgc3BhY2UgLSBzUkdCAAAAAAAAAAAAAAAuSUVDIDYxOTY2LTIuMSBEZWZhdWx0IFJH QiBjb2xvdXIgc3BhY2UgLSBzUkdCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRlc2MAAAAAAAAALFJl ZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAACxSZWZl cmVuY2UgVmlld2luZyBDb25kaXRpb24gaW4gSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAB2aWV3AAAAAAATpP4AFF8uABDPFAAD7cwABBMLAANcngAAAAFYWVogAAAAAABMCVYA UAAAAFcf521lYXMAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAKPAAAAAnNpZyAAAAAAQ1JUIGN1 cnYAAAAAAAAEAAAAAAUACgAPABQAGQAeACMAKAAtADIANwA7AEAARQBKAE8AVABZAF4AYwBoAG0A cgB3AHwAgQCGAIsAkACVAJoAnwCkAKkArgCyALcAvADBAMYAywDQANUA2wDgAOUA6wDwAPYA+wEB AQcBDQETARkBHwElASsBMgE4AT4BRQFMAVIBWQFgAWcBbgF1AXwBgwGLAZIBmgGhAakBsQG5AcEB yQHRAdkB4QHpAfIB+gIDAgwCFAIdAiYCLwI4AkECSwJUAl0CZwJxAnoChAKOApgCogKsArYCwQLL AtUC4ALrAvUDAAMLAxYDIQMtAzgDQwNPA1oDZgNyA34DigOWA6IDrgO6A8cD0wPgA+wD+QQGBBME IAQtBDsESARVBGMEcQR+BIwEmgSoBLYExATTBOEE8AT+BQ0FHAUrBToFSQVYBWcFdwWGBZYFpgW1 BcUF1QXlBfYGBgYWBicGNwZIBlkGagZ7BowGnQavBsAG0QbjBvUHBwcZBysHPQdPB2EHdAeGB5kH rAe/B9IH5Qf4CAsIHwgyCEYIWghuCIIIlgiqCL4I0gjnCPsJEAklCToJTwlkCXkJjwmkCboJzwnl CfsKEQonCj0KVApqCoEKmAquCsUK3ArzCwsLIgs5C1ELaQuAC5gLsAvIC+EL+QwSDCoMQwxcDHUM jgynDMAM2QzzDQ0NJg1ADVoNdA2ODakNww3eDfgOEw4uDkkOZA5/DpsOtg7SDu4PCQ8lD0EPXg96 D5YPsw/PD+wQCRAmEEMQYRB+EJsQuRDXEPURExExEU8RbRGMEaoRyRHoEgcSJhJFEmQShBKjEsMS 4xMDEyMTQxNjE4MTpBPFE+UUBhQnFEkUahSLFK0UzhTwFRIVNBVWFXgVmxW9FeAWAxYmFkkWbBaP FrIW1hb6Fx0XQRdlF4kXrhfSF/cYGxhAGGUYihivGNUY+hkgGUUZaxmRGbcZ3RoEGioaURp3Gp4a xRrsGxQbOxtjG4obshvaHAIcKhxSHHscoxzMHPUdHh1HHXAdmR3DHeweFh5AHmoelB6+HukfEx8+ H2kflB+/H+ogFSBBIGwgmCDEIPAhHCFIIXUhoSHOIfsiJyJVIoIiryLdIwojOCNmI5QjwiPwJB8k TSR8JKsk2iUJJTglaCWXJccl9yYnJlcmhya3JugnGCdJJ3onqyfcKA0oPyhxKKIo1CkGKTgpaymd KdAqAio1KmgqmyrPKwIrNitpK50r0SwFLDksbiyiLNctDC1BLXYtqy3hLhYuTC6CLrcu7i8kL1ov kS/HL/4wNTBsMKQw2zESMUoxgjG6MfIyKjJjMpsy1DMNM0YzfzO4M/E0KzRlNJ402DUTNU01hzXC Nf02NzZyNq426TckN2A3nDfXOBQ4UDiMOMg5BTlCOX85vDn5OjY6dDqyOu87LTtrO6o76DwnPGU8 pDzjPSI9YT2hPeA+ID5gPqA+4D8hP2E/oj/iQCNAZECmQOdBKUFqQaxB7kIwQnJCtUL3QzpDfUPA RANER0SKRM5FEkVVRZpF3kYiRmdGq0bwRzVHe0fASAVIS0iRSNdJHUljSalJ8Eo3Sn1KxEsMS1NL mkviTCpMcky6TQJNSk2TTdxOJU5uTrdPAE9JT5NP3VAnUHFQu1EGUVBRm1HmUjFSfFLHUxNTX1Oq U/ZUQlSPVNtVKFV1VcJWD1ZcVqlW91dEV5JX4FgvWH1Yy1kaWWlZuFoHWlZaplr1W0VblVvlXDVc hlzWXSddeF3JXhpebF69Xw9fYV+zYAVgV2CqYPxhT2GiYfViSWKcYvBjQ2OXY+tkQGSUZOllPWWS ZedmPWaSZuhnPWeTZ+loP2iWaOxpQ2maafFqSGqfavdrT2una/9sV2yvbQhtYG25bhJua27Ebx5v eG/RcCtwhnDgcTpxlXHwcktypnMBc11zuHQUdHB0zHUodYV14XY+dpt2+HdWd7N4EXhueMx5KnmJ eed6RnqlewR7Y3vCfCF8gXzhfUF9oX4BfmJ+wn8jf4R/5YBHgKiBCoFrgc2CMIKSgvSDV4O6hB2E gITjhUeFq4YOhnKG14c7h5+IBIhpiM6JM4mZif6KZIrKizCLlov8jGOMyo0xjZiN/45mjs6PNo+e kAaQbpDWkT+RqJIRknqS45NNk7aUIJSKlPSVX5XJljSWn5cKl3WX4JhMmLiZJJmQmfyaaJrVm0Kb r5wcnImc951kndKeQJ6unx2fi5/6oGmg2KFHobaiJqKWowajdqPmpFakx6U4pammGqaLpv2nbqfg qFKoxKk3qamqHKqPqwKrdavprFys0K1ErbiuLa6hrxavi7AAsHWw6rFgsdayS7LCszizrrQltJy1 E7WKtgG2ebbwt2i34LhZuNG5SrnCuju6tbsuu6e8IbybvRW9j74KvoS+/796v/XAcMDswWfB48Jf wtvDWMPUxFHEzsVLxcjGRsbDx0HHv8g9yLzJOsm5yjjKt8s2y7bMNcy1zTXNtc42zrbPN8+40DnQ utE80b7SP9LB00TTxtRJ1MvVTtXR1lXW2Ndc1+DYZNjo2WzZ8dp22vvbgNwF3IrdEN2W3hzeot8p 36/gNuC94UThzOJT4tvjY+Pr5HPk/OWE5g3mlucf56noMui86Ubp0Opb6uXrcOv77IbtEe2c7iju tO9A78zwWPDl8XLx//KM8xnzp/Q09ML1UPXe9m32+/eK+Bn4qPk4+cf6V/rn+3f8B/yY/Sn9uv5L /tz/bf///+0ADEFkb2JlX0NNAAL/7gAOQWRvYmUAZIAAAAAB/9sAhAAMCAgICQgMCQkMEQsKCxEV DwwMDxUYExMVExMYEQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMAQ0LCw0ODRAO DhAUDg4OFBQODg4OFBEMDAwMDBERDAwMDAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/ wAARCACgAGwDASIAAhEBAxEB/90ABAAH/8QBPwAAAQUBAQEBAQEAAAAAAAAAAwABAgQFBgcICQoL AQABBQEBAQEBAQAAAAAAAAABAAIDBAUGBwgJCgsQAAEEAQMCBAIFBwYIBQMMMwEAAhEDBCESMQVB UWETInGBMgYUkaGxQiMkFVLBYjM0coLRQwclklPw4fFjczUWorKDJkSTVGRFwqN0NhfSVeJl8rOE w9N14/NGJ5SkhbSVxNTk9KW1xdXl9VZmdoaWprbG1ub2N0dXZ3eHl6e3x9fn9xEAAgIBAgQEAwQF BgcHBgU1AQACEQMhMRIEQVFhcSITBTKBkRShsUIjwVLR8DMkYuFygpJDUxVjczTxJQYWorKDByY1 wtJEk1SjF2RFVTZ0ZeLys4TD03Xj80aUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9ic3R1dnd4eX p7fH/9oADAMBAAIRAxEAPwDPKZrXOMMaXERIaCYn6O7b9HcnglwA0k88wOXO2/nbWqyK62taws3k yWt3iQJLbHF3pXe7c39Nez0vW/R00/oWenTaJpoRjbWaNzoHOsz2jn2/S3fyP31N1Yb/AIRnAJL3 NaPdO3Y9jr637tv76mHCXP8Ac0gkAhwBj2e3e2l9n5/5lldWz+bULLz+ZILj2ncdBP0nve76DNz3 2/zbP+09PqJWfJNCu7DaP9LR/wBuj/yKW0f6Wj/t0f8AkVMnJBLS7UaH9If7k05H73/gh/uSvx/B VeH4rQP9LR/26P8AyKbaP9LR/wBuj/yKnuyP3v8AwQpt2R+9/wCCFK/H8FV4fix2if52n/t0f+RT hvhZTP8Axo/761zk+7In6X/ghSJuDNzyS3g+8kf2/opfVVeH4ruqLQDMkgO2kAEtP0XbW2Wvb/13 Z/3xQa1z52NL40O0F0E9jtH0v5KM21pGz3DcRLQYBJ/ebttpf/2xWnArLJNZeAOJbDNx+iGmm1r/ APhNjKWf8FZf6qFkJoHVriDqOE6Ja0E7mncddxB3aDdBc78522v6f56H3Tr0W1q//9DOkjgEu1IA kkwJ0hWS14Ebh3BG14gBz/buqD3e73/m/wDqQVJgWQCSRJG4M0H/AAlksbtc7f7/AGfzdn+CTXwI aPcRxzqT9H6fv973vd7/AH+l6atHemiNBe7K2wbYnc7vEck/Ra2v9E3c7a1lVf0P+NtsrpiSaoaA BZHveOZOsbv5KeG1PMS+xugJENb8GfvIZOuupPJPikAon7fBSQ4STta5wO0F21pe6OzRAc938lu5 qJNbrVJk6Ra4bS4Fu9oe2REtd9F7f5LoSsKWHKk15aZaY8fNR7p0lKJ1kN2yfzdBPkjNduE7twAM 7wTzA/wLfW26f6T2f4H/AE1YWviQRLTy0pnBnYkg/vDWUiOiQa1TWuIYSZdJJL9u0cu3u2tG2tv0 9n/B2s/0aEjMcS1s8CZO6Ib7d72M/Psfs9P2fvoWz3bNP3edJjb9L93ch3CTuC//0aNXL/6g/wDP lKZh2uLxBc0S0nWCSQXD+UpV8v8A6g/8+UqA/O/qj8qt9/o0O31VokkrOIzHdVe61tZNZq2Os3kD e51eraHNf79vt9v003JkGOPEQTrGOmp/WTjjj/00whxy4Qa0J1/qx4mqrWFfTjgucA82uDLW6gCm DuboPfv3btv8ihT9DHqsorsqa92Tc6t/vd7AH+ntocw1t3Mq/WPVf/57Q7RTVRUBQy2x4saHy8Oc 5lj6K4a1+3c7azezYq88uPMBjIkY5CY6GMRLh92/V/6bz/lxssYTxnjBFxAOoJ34P/VqJ1VUtYLv Y4kOftcC1s/9Oz0//Bf+3EfIux8oMBIoNTnNZAc8ejH6NnDP5t3823/RqV9NNgZXjsrrfZfZR6rS 4wKwxz7Pc97f0e6x9ic