Два наименьших последовательных полнократных числа – это 8 и 9. Согласно гипотезе Эрдёша, не существует трёх последовательных полнократных чисел. В связи с понятием полнократных чисел стали рассматривать разложение чисел не только в сумму и произведение других чисел, но ввели в рассмотрение разложение чисел в виде разности двух полнократных чисел. Именно введение разности в рассмотрение – главное значение этого класса чисел. Ведь до сих пор упоминалось сложение, умножение, деление, а о разности даже не заикались. Любое нечетное число представимо в виде разности двух последовательных квадратов: (k+1)2-k2=k2+2k+1-k2=2k+1 – нечетное число. Аналогично представимо любое число кратное четырем: (k+2)2-k2=k2+4k+4-k2=4k+4. Но встал вопрос о представлении в виде разности двух полнократных чисел любого числа, кратного двум, но не кратного четырем. Например, 2=33-52. Долго стоял вопрос с разложением числа 6, пока не доказали, что любое число допускает бесконечно много таких представлений. В частности, 6=252·73-4632=214 375-214 369. На русском языке литературы о полнократных числах нет, но спасает то, что в Википедии дается перевод статей на русский и можно почерпнуть информацию.
***
Натуральное число называется необычным, если в его разложении на простые множители самый большой простой множитель строго больше квадратного корня из числа n. (Как тяжело писать, когда нельзя употреблять ни редактор формул, ни встроенные символы и приходится использовать только то, что есть на клавиатуре. Вместо одного значка пишешь четыре слова. Увы, в определении приходится выходить из множества натуральных чисел и опираться на числа иррациональные, но для полноты охвата прилагательных, применимых к натуральным числам, не хотелось выбрасывать это определение. Все простые числа необычны. Для любого простого p все его кратные меньше p2 необычны. Первые несколько необычных чисел: 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 31, 33, 34, 35, … .
***
Сфеническое натуральное число (от др.-греч. сфена – клин) – число, равное произведению трёх различных простых чисел (так, например, 30=2·3·5; соответственно, число 30 является первым сфеническим). Количество делителей произвольного сфенического числа всегда равно 8. Например, если n
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.