3-го удвоения……..60 коп. х 2 = 1 руб. 20 коп.
« 3-й уплаты…..1 руб. 20 коп. – 1 руб. 20 коп. = 0.
11. Наш календарь ведет свое начало от календаря древних римлян. Римляне же (до Юлия Цезаря) считали началом года не 1 января, а 1 марта. Декабрь тогда был, следовательно, десятый месяц. С перенесением начала года на 1 января названия месяцев изменены не были. Отсюда и произошло то несоответствие между названием и порядковым номером, которое существует теперь для ряда месяцев:
12. Проследим за тем, что проделано было с задуманным числом. Прежде всего к нему приписали взятое трехзначное число еще раз. Это то же самое, что приписать три нуля и прибавить затем первоначальное число; например:
872 872 = 872 000 + 872.
Теперь ясно, что, собственно, проделано было с числом: его увеличили в 1000 раз и, кроме того, прибавили его самого; короче сказать – умножили число на 1001.
Что же сделано было потом с этим произведением? Его разделили последовательно на 7, на 11 и на 13. В конечном счете, значит, разделили его на 7 х 11 х 13, т. е. на 1001.
Итак, задуманное число сначала умножили на 1001, потом разделили на 1001. Надо ли удивляться, что в результате получилось то же самое число?
______________________________
Прежде чем закончить главу о головоломках в доме отдыха, расскажу еще о трех арифметических фокусах, которыми вы можете занять досуг ваших товарищей. Два состоят в отгадывании чисел, третий – в отгадывании владельцев вещей.
Это старые, быть может, даже и известные вам фокусы, но едва ли все знают, на чем они основаны. А без знания теоретической основы фокуса нельзя сознательно и уверенно его выполнять. Обоснование первых двух фокусов потребует от нас весьма скромной и ничуть не утомительной экскурсии в область начальной алгебры.
13. Зачеркнутая цифра
Пусть товарищ ваш задумает какое-нибудь многозначное число, например 847. Предложите ему найти сумму цифр этого числа (8+ 4 + 7 = 19) и отнять ее от задуманного числа. У загадчика окажется
847 – 19 = 828.
В том числе, которое получится, пусть он зачеркнет одну цифру – безразлично какую – и сообщит вам все остальные. Вы немедленно называете ему зачеркнутую цифру, хотя не знаете задуманного числа и не видели, что с ним проделывалось.
Как можете вы это выполнить и в чем разгадка фокуса? Выполняется это очень просто: подыскивается такая цифра, которая вместе с суммою вам сообщенных цифр составила бы ближайшее число, делящееся на 9 без остатка. Если, например, в числе 828 была зачеркнута первая цифра (8) и вам сообщены цифры 2 и 8, то, сложив 2 + 8, вы соображаете, что до ближайшего числа, делящегося на 9, т. е. до 18, не хватает 8. Это и есть зачеркнутая цифра.
Почему так получается? Потому что если от какого-либо числа отнять сумму его цифр, то должно остаться число, делящееся на 9, – иначе говоря, такое, сумма цифр которого делится на 9. В самом деле, пусть в задуманном числе цифра сотен – а, цифра десятков – Ь и цифра единиц – с. Значит, всего в этом числе содержится единиц
100а + 10b + с.
Отнимаем от этого числа сумму его цифр а + b + с.
Получим
100a + 10b + c – (a + b + c) = 99a + 9b = 9(11a + b).
Но