даже станет казаться, будто вы считаете быстрее калькулятора – отчасти потому, что многие случайно набирают на калькуляторе неправильные цифры. Оцените по достоинству каждый метод и проникнитесь осознанием того, что вы – один из немногих, кто теперь на «ты» с этими фокусами. Ну а если захотите вникнуть в суть, загляните в самый конец – там вы найдете доказательства.
2
Проще некуда
Семь правил, которые вам понадобятся
Дорогой читатель, позвольте вас успокоить. Чтобы учиться быстрому счету по этой книге, никаких особых познаний в математике вам не понадобится. Единственное, что от вас потребуется, – это помнить несколько простейших базовых правил, которым учат еще в начальной школе. И больше ничего, обещаю! Честное слово, даже если вы не станете читать эту главу, тех правил достаточно, чтобы вы справился с остальными главами моей книги.
Итак, в основе книги лежат семь легких математических правил. Сравнить их можно с содержимым столярного ящика. Строя прекраснейшие дома, плотник пользуется лишь пилой и топором. Вот и вам понадобится всего несколько математических инструментов, чтобы стать мастером быстрого счета. Некоторые из этих инструментов такие простые, что вы, возможно, сочтете лишним их упоминать. Но я все равно расскажу о них – во-первых, потому что они важные, а во-вторых, потому что они простые и лишний раз порадуют вас.
Правило 1
Первое правило на удивление простое. Порядок чисел при умножении роли не играет:
a × b = b × a
Если буквы вам не по душе, могу продемонстрировать то же самое на простейшем цифровом примере.
3 × 7 даст тот же результат, что 7 × 3. Итак, то, в каком порядке перемножать числа, совершенно не важно.
Правило 2
Второе правило тоже манна небесная для тех, кто пребывает в заблуждении и считает математику сложной.
Порядок чисел при сложении роли не играет.
a + b = b + a
И вот вам пример: 2 + 3 дадут в результате то же число, что и 3 + 2.
Правило 3
Квадрат определенного числа выглядит следующим образом: a × a = a2.
Обратите внимание на крошечную цифру 2 над последней «а» – читая эту книгу, вы успеете близко с ней познакомиться. Математики называют такие цифры степенями.
Вот еще пример: 3 × 3 можно обозначить как 32.
Разумеется, отрицательные числа тоже можно возводить в квадрат:
(‒a) × (‒a) = (‒a)2 = a2
Например: (‒3) × (‒3) соответствует (‒3)2.
А вот это невероятно красиво:
(‒3)2 дает тот же результат, что и 32.
Правило 4
На квадратные корни тоже приятно посмотреть:
Это означает, что если извлечь квадратный корень из возведенного в квадрат числа, то это же число и получится.
На языке цифр это выглядит вот так:
Правило 5
Когда надо умножать отрицательные числа, многие впадают в ступор. Если