эволюции живых существ путь математики состоял из головокружительных взлетов и падений. Если бы Александрийскую библиотеку не сожгли дотла, вполне возможно, что мы полнее и быстрее развили бы достижения древних греков и уже во времена Кардано, Ньютона или Паскаля впервые отправили человека на Луну. Кто знает, чего бы мы достигли. И какие планеты терраформировали и колонизировали бы к началу двадцать первого века.
Каких высот достигла бы медицина. Не будь в нашей истории темных веков, этого блэкаута, мы, возможно, уже нашли бы способ не стареть и не умирать.
В наших кругах принято подшучивать над Пифагором и его мистическим учением, основанным на идеальной геометрии и других математических абстракциях. Но если вообще говорить о религии, то религия математики выглядит идеальной, ибо если Бог существует, то кто он, если не математик?
Сегодня, пожалуй, мы можем сказать, что поднялись чуть ближе к нашему божеству. В самом деле, у нас появился теоретический шанс повернуть время вспять, возродить ту древнюю библиотеку и встать на плечи великанов, которых не было.
Простые числа
Текст был до конца выдержан в том же восторженном духе. Я чуть больше узнал о Бернхарде Римане, болезненно застенчивом немецком вундеркинде, жившем в девятнадцатом веке. Мальчик в раннем возрасте проявил неординарные математические способности, потом была блестящая научная карьера и череда нервных срывов, омрачивших его зрелые годы. Позже я узнал, что это одна из ключевых проблем, преграждающих людям путь к числовому пониманию, – у них просто не выдерживает нервная система.
Простые числа сводят людей с ума в буквальном смысле слова, тем более что данная область полна загадок. Человек знает, что простое число есть целое число, которое делится только на единицу и на само себя, а дальше начинаются всевозможные проблемы.
Например, людям известно, что простых чисел столько же, сколько чисел вообще, ведь количество и тех и других бесконечно. Но этот факт не укладывается в человеческой голове, ведь понятно же, что всех чисел вместе должно быть больше, чем только одних простых. Так что некоторые люди после безуспешных попыток осмысления данного парадокса совали в рот пистолет, нажимали на спуск и вышибали себе мозг.
Люди также поняли кое-что насчет распределения простых чисел. Тут как с воздухом на Земле: чем выше поднимаешься, тем их меньше. К примеру, в промежутке от 0 до 100 помещается 25 простых чисел, от 100 до 200 уже только 21 простое число, а от 1000 до 1100 всего 16. Однако в отличие от земного воздуха, как бы высоко мы ни взобрались по числовой оси, поблизости все равно окажутся простые числа. Например, 2097593 – простое число, и между ним и, скажем, 4314398832739895727932419750374600193 их найдутся еще миллионы.
Тем не менее человек искал закономерность в на первый взгляд произвольном порядке распределения простых чисел. Ясно, что их частота уменьшается, но почему? Человечество билось над этой задачей, сознавая, что, решив ее, оно сделает огромный шаг вперед, поскольку простые числа суть основа математики, а математика есть основа