Владимир Паперный

Культура три. Как остановить маятник?


Скачать книгу

антропологии (в частности, из работ В.В. Иванова) известно, что бинарные структуры являются более архаичными, чем трехчастные. Поэтому усложнение концепции, движение от двухчастной модели к трехчастной соответствует общей логике истории культуры. Следуя марксистско-гегелевской традиции, культуры 1, 2 и 3 можно рассматривать в терминах тезис – антитезис – синтез.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7Rq8UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAA8cAVoAAxslRxwCAAACB/YAOEJJTQQlAAAAAAAQg0sDbWBTQnE3YxcS8GgGTThCSU0EOgAAAAAA9wAAABAAAAABAAAAAAALcHJpbnRPdXRwdXQAAAAFAAAAAFBzdFNib29sAQAAAABJbnRlZW51bQAAAABJbnRlAAAAAEltZyAAAAAPcHJpbnRTaXh0ZWVuQml0Ym9vbAAAAAALcHJpbnRlck5hbWVURVhUAAAAAQAAAAAAD3ByaW50UHJvb2ZTZXR1cE9iamMAAAAVBB8EMARABDAEPAQ1BEIEQARLACAERgQyBDUEQgQ+BD8EQAQ+BDEESwAAAAAACnByb29mU2V0dXAAAAABAAAAAEJsdG5lbnVtAAAADGJ1aWx0aW5Qcm9vZgAAAAlwcm9vZkNNWUsAOEJJTQQ7AAAAAAItAAAAEAAAAAEAAAAAABJwcmludE91dHB1dE9wdGlvbnMAAAAXAAAAAENwdG5ib29sAAAAAABDbGJyYm9vbAAAAAAAUmdzTWJvb2wAAAAAAENybkNib29sAAAAAABDbnRDYm9vbAAAAAAATGJsc2Jvb2wAAAAAAE5ndHZib29sAAAAAABFbWxEYm9vbAAAAAAASW50cmJvb2wAAAAAAEJja2dPYmpjAAAAAQAAAAAAAFJHQkMAAAADAAAAAFJkICBkb3ViQG/gAAAAAAAAAAAAR3JuIGRvdWJAb+AAAAAAAAAAAABCbCAgZG91YkBv4AAAAAAAAAAAAEJyZFRVbnRGI1JsdAAAAAAAAAAAAAAAAEJsZCBVbnRGI1JsdAAAAAAAAAAAAAAAAFJzbHRVbnRGI1B4bEBywAAAAAAAAAAACnZlY3RvckRhdGFib29sAQAAAABQZ1BzZW51bQAAAABQZ1BzAAAAAFBnUEMAAAAATGVmdFVudEYjUmx0AAAAAAAAAAAAAAAAVG9wIFVudEYjUmx0AAAAAAAAAAAAAAAAU2NsIFVudEYjUHJjQFkAAAAAAAAAAAAQY3JvcFdoZW5QcmludGluZ2Jvb2wAAAAADmNyb3BSZWN0Qm90dG9tbG9uZwAAAAAAAAAMY3JvcFJlY3RMZWZ0bG9uZwAAAAAAAAANY3JvcFJlY3RSaWdodGxvbmcAAAAAAAAAC2Nyb3BSZWN0VG9wbG9uZwAAAAAAOEJJTQPtAAAAAAAQASwAAAABAAIBLAAAAAEAAjhCSU0EJgAAAAAADgAAAAAAAAAAAAA/gAAAOEJJTQQNAAAAAAAEAAAAHjhCSU0EGQAAAAAABAAAAB44QklNA/MAAAAAAAkAAAAAAAAAAAEAOEJJTScQAAAAAAAKAAEAAAAAAAAAAjhCSU0D9QAAAAAASAAvZmYAAQBsZmYABgAAAAAAAQAvZmYAAQChmZoABgAAAAAAAQAyAAAAAQBaAAAABgAAAAAAAQA1AAAAAQAtAAAABgAAAAAAAThCSU0D+AAAAAAAcAAA/////////////////////////////wPoAAAAAP////////////////////////////8D6AAAAAD/////////////////////////////A+gAAAAA/////////////////////////////wPoAAA4QklNBAgAAAAAABAAAAABAAACQAAAAkAAAAAAOEJJTQQeAAAAAAAEAAAAADhCSU0EGgAAAAADWQAAAAYAAAAAAAAAAAAACSMAAAXoAAAAEgBQAGEAcABlAHIAbgB5AF8AYwBvAHYAZQByAC4AagBwAGUAZwAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAF6AAACSMAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAQAAAAAAAG51bGwAAAACAAAABmJvdW5kc09iamMAAAABAAAAAAAAUmN0MQAAAAQAAAAAVG9wIGxvbmcAAAAAAAAAAExlZnRsb25nAAAAAAAAAABCdG9tbG9uZwAACSMAAAAAUmdodGxvbmcAAAXoAAAABnNsaWNlc1ZsTHMAAAABT2JqYwAAAAEAAAAAAAVzbGljZQAAABIAAAAHc2xpY2VJRGxvbmcAAAAAAAAAB2dyb3VwSURsb25nAAAAAAAAAAZvcmlnaW5lbnVtAAAADEVTbGljZU9yaWdpbgAAAA1hdXRvR2VuZXJhdGVkAAAAAFR5cGVlbnVtAAAACkVTbGljZVR5cGUAAAAASW1nIAAAAAZib3VuZHNPYmpjAAAAAQAAAAAAAFJjdDEAAAAEAAAAAFRvcCBsb25nAAAAAAAAAABMZWZ0bG9uZwAAAAAAAAAAQnRvbWxvbmcAAAkjAAAAAFJnaHRsb25nAAAF6AAAAAN1cmxURVhUAAAAAQAAAAAAAG51bGxURVhUAAAAAQAAAAAAAE1zZ2VURVhUAAAAAQAAAAAABmFsdFRhZ1RFWFQAAAABAAAAAAAOY2VsbFRleHRJc0hUTUxib29sAQAAAAhjZWxsVGV4dFRFWFQAAAABAAAAAAAJaG9yekFsaWduZW51bQAAAA9FU2xpY2VIb3J6QWxpZ24AAAAHZGVmYXVsdAAAAAl2ZXJ0QWxpZ25lbnVtAAAAD0VTbGljZVZlcnRBbGlnbgAAAAdkZWZhdWx0AAAAC2JnQ29sb3JUeXBlZW51bQAAABFFU2xpY2VCR0NvbG9yVHlwZQAAAABOb25lAAAACXRvcE91dHNldGxvbmcAAAAAAAAACmxlZnRPdXRzZXRsb25nAAAAAAAAAAxib3R0b21PdXRzZXRsb25nAAAAAAAAAAtyaWdodE91dHNldGxvbmcAAAAAADhCSU0EKAAAAAAADAAAAAI/8AAAAAAAADhCSU0EEQAAAAAAAQEAOEJJTQQUAAAAAAAEAAAAAThCSU0EDAAAAAARmgAAAAEAAABnAAAAoAAAATgAAMMAAAARfgAYAAH/2P/tAAxBZG9iZV9DTQAC/+4ADkFkb2JlAGSAAAAAAf/bAIQADAgICAkIDAkJDBELCgsRFQ8MDA8VGBMTFRMTGBEMDAwMDAwRDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAENCwsNDg0QDg4QFA4ODhQUDg4ODhQRDAwMDAwREQwMDAwMDBEMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgAoABnAwEiAAIRAQMRAf/dAAQAB//EAT8AAAEFAQEBAQEBAAAAAAAAAAMAAQIEBQYHCAkKCwEAAQUBAQEBAQEAAAAAAAAAAQACAwQFBgcICQoLEAABBAEDAgQCBQcGCAUDDDMBAAIRAwQhEjEFQVFhEyJxgTIGFJGhsUIjJBVSwWIzNHKC0UMHJZJT8OHxY3M1FqKygyZEk1RkRcKjdDYX0lXiZfKzhMPTdePzRieUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9jdHV2d3h5ent8fX5/cRAAICAQIEBAMEBQYHBwYFNQEAAhEDITESBEFRYXEiEwUygZEUobFCI8FS0fAzJGLhcoKSQ1MVY3M08SUGFqKygwcmNcLSRJNUoxdkRVU2dGXi8rOEw9N14/NGlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vYnN0dXZ3eHl6e3x//aAAwDAQACEQMRAD8A9RSSSQSpJYnTvrBldT6WeoYOHXe5uMbXUNyJP2naLW9Ma70R+lbW79PfZ6bKrbK6/wBN+l9GR+sJfjW5mJjjIx24dOVjuD3Mdddk7vsmAyt1R9P1f0H6V7v+1VX6BFDspi5o0JAKy7frFhV29OcX1swepUWZIzLrPSDWMbTZX7Xt2O9VuT+fZV6exU7Op9XszrsT7FQ2/Hpqtsb9odH6YZPp17/s35tmNXXY7/hfU/wXp2U/iPNT5XlzmhCM+ExBE5e3Hhl6b4l0AJGnf3s/eH3pw5p4IPwXKf8AOV7umP6jVjBzKennPurNkOa8Bx+xH9E73foMmuyz/BWUfzKtU/WRtNvp20An7aMK17HyxrD6bPtjHOY31WV5WXh4WTV/2nybbve/7Os/k/i/M5+YhhngjjjIyjKQnxSjwR4vlXyxgCwXoklndb6lldMw7M2rHZkVUVvsu32ms+3b6dde2q7d6m5/v/wez+Wqmd9YMvAyW49+GxztrXu9K4lxbZkjBrbTW6lvqXursrv9Lf8Azn6t/wAMtxjdxJYf/Odgxcax1G7IycoYxpqfuaxn2v8AZX2yy97K/wBFvO+tnpepdZ+h/wBLfXuIKUkkkkp//9D1FJVeqZ7Om9Pvzn1uubQ3c6ustDiJDfb6rq6/zvznpMzw6rIvNT24+OCWWmP0oa3c99DJ3+nu/R1vs2ev/OU/oPStsCWp0z6u4fS7KbMS2wPqx2YtpdtPr10jZhuymsZW11+Iz9HVdV6X6L9Fd6n6L0odM6CcbEx68iyLK8l+bbVTBpNry9zKGeoz1PsmJv8A1Vns2ejR/o0UdexfsnTcs12Nq6poyY3Vu9GzMNd7GlzvUazHtp9Orf8ArP6JEs6sKcPHyMjGtqvy7G00YZ2m0vfuLGO2PdSz9Ex+Rd+k/Q012Ioajvqti+kylmTfXXW3KqYwCotFWa5tl9DWPpc306dm3D/0Nf6Oz12KVPSMXp+U+zGLmsdRRjMpJBayvGD2UNY4j1Xfzrt77rLVKz6w1VXPw7ca0dQbZXVXiNh3q+sLbKbqL5bT9n9PEzH2vt9J9P2O/wDRfzHrV+p9YyMMufkYFgYwsY6xr6y0mx1VVXpkvY536S/372V+n6Fv/df1sj/jAJy5EwhvPJCNXXF4er+syYvm+jWx+gz0zqGHlv2O6o643+gZDG3DbY3G9dr9nqbrcnY/+bycm9XbuhYnUhktzHOsF+OcZujJq3EufkYrnMc6rJc7037/APgMf2fokIdWa3KxcPIospvy/VDAdrmtNRO1r3scdv2qllt+N+/VTd/o1Kvr9VWD1HOOPa5vTrXUvqBr3vLSwb6ps2bXer7fVdXYsH4Ocx+I4ZS2JnLpXqhPH6f/AArhZclcBdHqHTmdQ6Zb06+6wNvrFdl7NgsPG5/urdQ174/0Kl9gr/ao6p6j/UFH2b0vb6cF/rer9H1vV3e3+e9PZ/g1Uv8ArBRTU/LdS89PqvONdlgtAY5ln2W+91TnNs+yY+S19F138j1/R+yfrCB/zrx9lzjiXzQ4MLRsPuOU/o5abN/p1u+11Pf+kd+lxv0tP6Rl9NXatdPX9XMGrE+ysstE5LMt9xLXWOdVf+0KKC5zNrcWq/6FNez9H/wtttq1Vn2dYr/aNnTMal+TlVMZY/aWtrAc9tbwbXu/nKGO9e2tjf5t9P8ApUHE+sDMmvAudi2009VNf2Sx7mQW2UW9Q3WBry6v06cexljf9L6f5n6RJDrJJJIJf//R9E6xgP6l0zIwa7RQ/IbtFrmeoG6h381vq3/R/wBIqruhWCh2DTkivpxvqtrxvTM11Md612FRcy2rZj22MZ6H6P8AU6/Vx6/1f7PVja6SCXBs+qtd9LMPJubdgV5t+YMd1bgdmRXkMfj+uLvU9SvJzbsuvL/nWWel6fp+krdnR7rcLHouynWZeBa27EzHNO4OYHV1Oyq2va3IdZjWWY+bt9D7R6ttlP2Sz0/S0nPaxpe7RrAXOME6DU6BcXjs6pV0rFxXV3tw8fJwc5lkPL3VX5FF7sGyd1rndOt+3uya9n6viY/T/U/nLkUO5d9X7L8z9qPyQ3qTHVHGuZWPTrbS3IZ6Jpe8vuZe3qGazJ/TVv8A0v6H0LaK7VDq/Tc3OxbMa3JY2x76bK3tqOxoqfXfs9N1u+z1HVfT9Vn/AEP0gW3ZTfrG3qfpu+xZT39MMB8gUj18XKup9Payj7YzqNX2n1P0tWdh2fQWVh4TMrrLTkYzrMO5mdZXZkVltlrX5WHkY78vcP36bfsFT/f+zsan9Gz+Zryvjn+4+Li4eDJHJxcPH/N8U/lkyY/m+jo5vQ7Mq+zK+0BmSLse3Fs2OIqZQd3oPrbdW2/1vVzWOs/RP9PMf+4pN+rAyMLqeObahkZ9zrqso0Bzqg4sLW7fU3Wvr9L+d9Wr/oLEpwK29L6dbVjbMmzqTdzzQ8kNZkZdlD7awK7GVMZc707H+mxnqK1diZDs3qjzjnJuGT0i39FS5u8VZDXvFZtc6ux9de71LPW9Omv+f9JixvhMZDnscfd4ow9wcPAImXtfqav9z+X+UZMnynR3X/V978bJ6cckHpmZe+6yg1/pA26z7Vl4jMhr2t9DIufd7nU+vVTbZVXZ/NW00cn6tNrrH2jqVeNbdbYKrRU1m63IzWdZY3ZfdYy+6l9PoYVfv/nL7f03qekqnWMXNceq/bWm5+RR015ayt91TC3MyHvx6WMDXZFeHU6h9/8ANW3/ANIs+z+r+htMofkYhx8yg4fUjlhnUcius2vf6zXY7cvp+S5jvTozKfTx/X/7zsP18T9Dbj+pX1zXdXH6O3F6k3Mx7AypmK7GbQWlzi99n2mzKsvNm619j/57ez1bbf03rqt/zdt/ZfSOnm+mxvSGhpNtBey4Nxrumt9Sj127G+nkepYzfZvW2kkpzR0WsfV39g+tYa/shwvXOtm01/Z/V/r/AJyS0kkEv//S9RSSSQSpLVJJJSpPiquT/OfJWlVyf5z5BY3/ABj/ANwf9Uh/3TJh+b6IVYxeXfAKurGLy75LnPgf/bHB5z/9JzZcnyFsSUkkl3jWUkkkkpSSSSSn/9P1FJJJBKkkkklKVXJ/nPkFaVXJ/nPkFjf8Y/8AcH/VIf8AdMmH5vohVjF5d8lXVjF5d8lznwP/ALY4POf/AKTmy5PkLYSSSXeNZSSSSSlJJJJKf//U9RSSSQSpJJJJSkN9LHu3GZRElHmwYs8ODLAZIXfDLa1AkahD9mr8Sp11NrnbOvippKHF8O5PFMZMeGEJx+WURqP0UmcjoSpJJJWkKSSSSUpJJJJT/9X1FJJJBKlT9e395XFnrnf+MufNi+7e1knj4vd4vblKHFXtVxcLLhAN2L2Sevb+8l69v7yGkuc+/wDOf+Kc3/huT/vmbhj2H2JPXt/eS9e395DSS+/85/4pzf8AhuT/AL5XDHsPsSevb+8nZdaXtBdoSEJSr/nG/EKXl+e5s5sYPMZSDOIIOSf7395BjGjoPsbySSS9AaqkkkklP//W9RSSSQS