rel="nofollow" href="#fb3_img_img_5ed8af24-5449-5b16-a196-9a3cd5c4f554.jpg" alt="images"/>
Figure 1.6. Illustration of the potential VT scaled to 2πεaψ20 for a value of κa = 20 and A12/(2πεaψ20) = 0.3.
The example in this graph is chosen to highlight some features. Some numbers are relevant. Suppose the particle radius is 0.2 μm, then the double layer thickness is κ–1 = 10nm. For distances less than a few nanometres the theory is unreliable. In the figure that corresponds to H/a ≈ 0.03. The sum of the two contributory potentials VT is then not accurately represented for very small H/a. Keeping that in mind, two features of the combined potential are clearly visible. Firstly, there are two attractive wells, one very close to the particle (where the theory is not valid) and one around H/a = 0.18. Secondly, moving the particles closer together from the latter minimum, there is a potential to overcome. It must be pointed out that these features are specific to the choice of parameters that has been made.
For much thicker double layers there are no potential minima in the relevant range and the interactive force is always repulsive. This is illustrated in Fig. 1.7 where κa = 3. Note that the interaction is highly non-linear
Figure 1.7. Illustration of the potential VT scaled to 2πεaψ20 for a value of κa = 3 and A12/(2πεaψ20) = 0.3.
The plethora of behaviours of colloidal substances is largely due to the variety of possible outcomes for the interactive potential curve and whether there are minima or maxima in the ambient mechanical (and thermal) environment.
One consequence of the existence of an interactive potential is that there is always a force active between neighbouring particles and as a result considerations relating to the isostatic state are not as acute as in the case of an interaction that is solely due to contact.
References
Amontons, G. (1699) De la resistance causée dans les Machines, tant par les frottemens des parties qui les composent, que par roideur des cordes qu'on y employe, & la maniere de calculer l'un & l'autre (On the resistance caused in machines, both by the rubbing of the parts that compose them and by the stiffness of the cords that one uses in them, and the way of calculating both), Mémoires de l'Académie royale des sciences, in: Histoire de l'Académie royale des sciences, pp. 206–222.
Bi, D., Zhang, J., Bulbul Chakraborty, B. and Behringer, R. P. (2011) Jamming by shear. Nature 480 355–358.
Bowden, F.P. and Tabor, D. (1956) Friction and Lubrication. London: Methuen & Co Ltd.
Blumenfeld, R. (2007) Stresses in two-dimensional isostatic granular systems: exact solutions. New Journal of Physics 9 (2007) 160–181.
Coulomb, C.A. (1785) Théorie des Machines simples, en ayant égard au frottement de leurs parties et a la roideur des Corages. Tom. X of the Mémoires de Mathématique et de Physique Présentés à l’Académie Royale des Sciences, Par Divers Savans, pp. 161–332.
Cundall, P.A. and Strack, O.D.L. (1979) A discrete numerical model for granular assemblies. Géotechnique 29 47–65.
Dieterich, J.H. (1979) Modeling of rock friction — 1. Experimental results and constitutive equations. Journal of Geophysical Research 84 2161–2168.
Dieterich, J.H. (1981) Constitutive properties of faults with simulated gouge. In: Carter, N.L., Friedman, M., Logan, J.M. and Stearns, D.W. (Eds.), Mechanical Behavior of Crustal Rocks., Geophysical Monograph Series, Vol. 24. American Geophysical Union, Washington, DC, pp. 103–120.
Dorgan, K.M., Jumars, P.A., Johnson, B. and Boudray, B.P. (2006) Macrofaunal burrowing: the medium is the message. Oceanography and Marine Biology: An Annual Review, 44 85–121.
Ferellec, J-F. and McDowell, G.R. (2010) A method to model realistic particle shape and inertia in DEM. Granular Matter 12 459–467.
Hamaker, H.C. (1937) The London – van der Waals Attraction between Spherical Particles. Physica 4 (10) 1058–1072.
Hanaor, D.A.H., Gan, Y. and Einav, I. (2015) Contact mechanics of fractal surfaces by spline assisted discretisation. International Journal of Solids and Structures
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.