agriculture and small-scale farms under low input systems are needed to implement new agricultural systems all around the world with quinoa species with respect to Andean local communities. Scenarios for the future diffusion of quinoa to newer areas should integrate the Farmers’ Property Rights and the Nagoya Protocol (attached to the Convention on Biological Diversity) that offers a framework for Access and Benefices Sharing.
The actual diffusion of quinoa across all the continents (North America, Europe, Asia and Africa) has occurred in diverse ways and has different objectives. But an international network that primarily includes researchers and farmers could provide an opportunity for better characterization and understanding of this species.
The biogeography of quinoa, an ancestral and highly nutritional crop, provides a global foresight of this underutilized crop in world agriculture, and also shows its broad geographic extension. Several aspects linked to its high genetic diversity and plasticity demonstrate that quinoa could become one of the most important crops of the South American Andes and could extend its area of cultivation in other contexts in the world giving, due respect to the farmers’ rights for the local communities from the areas of domestication.
Acknowledgements
The authors wish to express their appreciation to farmers who cared for their seeds for telling us their stories, and also to projects that made possible funding of reported research activities BRG08, IMAS (ANR07 BDIV 016-01) and IRSES (PIRSES-GA-2008-230862). We also gratefully acknowledge Dr Eric Jellen (BYU, USA), Dr Daniel Bertero (UBA, Argentina) and Ingrid von Baer (AgroGen, Chile) for their images of quinoa grown in Bolivia, Argentina and Chile, respectively.
References
Aleman, J., Thomet, M., Bazile, D. and Pham, J.L. (2010) Central role of nodal farmers in seed exchanges for biodiversity dynamics: example of ‘curadoras’ for the quinoa conservation in Mapuche communities in south Chile. In: Coudel, E., Devautour, H., Soulard, C. and Hubert, B. (eds) International Symposium ISDA 2010. Innovation and Sustainable Development in Agriculture and Food: Abstracts and Papers. CIRAD, Montpellier. http://hal.archives-ouvertes.fr/hal-00530950/fr/
Altieri, M.A. (1987) Peasant agriculture and the conservation of crop and wild plant resources. Conservation Biology 1, 49–58.
Altieri, M. (1991) How best can we use biodiversity in agroecosystems? Outlook on Agriculture 20, 5–23.
Bazile, D. and Negrete, J. (2009) Quínoa y biodiversidad: cuáles son los desafíos regionales? Revista Geografica de Valparaíso 42, 1–141.
Bazile, D. and Weltzien, E. (2008) Agrobiodiversités: numéro spécial. Cahiers Agricultures 17, 73–256.
Bazile, D., Dembélé, S., Soumaré, M. and Dembele, D. (2008) Utilisation de la diversité variétale du sorgho pour valoriser la diversité des sols au Mali. Cahiers Agricultures 17, 86–94.
Bazile, D., Olguin Manzano, P.A., Nuñez, L., Croce, P., Alarcon, G., Lagos, J., Parra, F., Peredo, P. and Negrete Sepulveda, J. (2010) Differenciación territorial asociada a la quinua en el secano costero de la sexta región, Chile: consideraciones sobre las práticas y representaciones sociales para un desarrollo sostenible. Anales de la Sociedad Chilena de Ciencias Geograficas 103–109.
Bazile, D., Carrié, C., Vidal, A. and Negrete Sepulveda, J. (2011) Modélisation des dynamiques spatiales liées à la culture du quinoa dans le Nord chilien. [Modelisation of spatial dynamics linked to the cultivation of quinoa in northern Chile.] Mappemonde (102) (article 11204), 14. http://mappemonde.mgm.fr/num30/articles/art11204.html
Bertero, D., De la Vega, A., Correa, G., Jacobsen, S.-E. and Mujica, A. (2004) Genotype and genotype-by-environment interaction effect for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multienvironment trials. Field Crop Research 89, 299–318.
Brookfield, H. (2001) Exploring Agrobiodiversity. Columbia University Press, West Sussex, UK.
Bruno, M. and Whitehead, W.T. (2003) Chenopodium cultivation and formative period agriculture at Chiripa, Bolivia. Latin American Antiquity 14, 339–355.
Cauvin, J. (2008) The Birth of Gods and the Origins of Agriculture. Cambridge University Press, Cambridge.
Chevassus-au-Louis, B. and Bazile, D. (2008) Cultiver la diversité. Cahiers Agricultures 17, 77–78.
Christensen, S.A., Pratt, D.B., Pratt, C., Stevens, M.R., Jellen, E.N., Coleman, C.E., Fairbanks, D.J., Bonifacio, A. and Maughan, P.J. (2007) Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genetic Resources 5, 82–95.
Collins, W.W. and Qualset, C.O. (1999) Biodiversity in Agroecosystems. CRC Press LLC, Boca Raton, Florida.
Diamond, J. (2002) Evolution, consequences and future of plant and animal domestication. Nature 418, 700–707.
Fuentes, F. and Bhargava, A. (2011) Morphological analysis of quinoa germplasm grown under lowland desert conditions. Journal of Agronomy and Crop Science 197, 124–134.
Fuentes, F.F., Martínez, E.A., Hinrichsen, P.V., Jellen, E.N. and Maughan, P.J. (2009) Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conservation Genetics 10, 369–377.
Fuentes, F., Bazile, D., Bhargava, A. and Martínez, E.A. (2012) Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. The Journal of Agricultural Science 150, 702–716.
Gandarillas, H. (1979) Genetica y origen. In: Tapia, M.E. (ed.) Quinoa y Kaniwa. Instituto Interamericano de Ciencias Agricolas, Bogota, Colombia, pp. 45–64.
Harlan, J.R. (1971) Agricultural origins: centers and noncenters. Science 174, 468–474.
Heiser, C.B. and Nelson, C.D. (1974) On the origin of cultivated chenopods (Chenopodium). Genetics 78, 503–505.
Jackson, L.E., Pascual, U. and Hodgkin, T. (2007) Biodiversity in agricultural landscapes: investing without losing interest. Agriculture, Ecosystems and Environment 121, 196–210.
Jacobsen, S.-E., Monteros, C., Corcuera, L.J., Bravo, L.A., Christiansen, J.L. and Mujica, A. (2007) Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy 26, 471–475.
Jarvis, D.I., Padoch, C. and Cooper, H.D. (2007) Managing Biodiversity in Agricultural Ecosystems. Columbia University Press, New York.
Jellen, E.N., Kolano, B.A., Sederberg, M.C., Bonifacio, A. and Maughan, P.J. (2011) Chenopodium. In: Kole, C. (ed.) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Germany, pp. 35–61.
Kadereit, G., Borsch, T., Welsing, K. and Freitag, H. (2003) Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. International Journal of Plant Science 164, 959–986.
Kaihura, F. and Stocking, M. (2003) Agricultural Biodiversity in Smallholder Farms of East Africa. The United Nations University, Tokyo, Japan.
Lenné, J.M. and Wood, D. (2011) Agrobiodiversity Management for Food Security. CAB International, Wallingford, UK.
Maughan, P.J., Kolano, B.A., Maluszynska, J., Coles, N.D., Bonifacio, A., Rojas, J., Coleman, C.E., Stevens, M.R., Fairbanks, D.J., Perkinson, S.E. and Jellen, E.N. (2006) Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome 49, 825–839.
Maxted, N., Ford-Lloyd, B.V., Kell, S.P., Iriondo, J.M. and Dulloo, M.E. (2012) Crop Wild Relative Conservation