Naveen K. Nishchal

Optical Cryptosystems


Скачать книгу

transformed and the order of transformation.

      % PT is the plaintext% Phase_mask1 and Phase_mask2 are the two random phase masks to be used as the keys.PT=imread(’D:\Program\images\godisgreat.bmp’);%reading the image to be encryptedPT=double(PT(:,:,1));PT=PT./max(max(PT));figure;imagesc(abs(PT));colormap(gray);title(’original input image’);%defining the two random phase masks for the two keys[M,N]=size(PT);phase_values1=rand(M);phase_values2=rand(M);phase_mask1=exp(j*2*pi*phase_values1);%First Keyphase_mask2=exp(j*2*pi*phase_values2);%Second Key%%%%%Encryption%First Fractional Fourier transform with fractional order 0.25A=PT.*phase_mask1;A=frt(A,0.25);%Second Fractional Fourier transform with fractional order 0.45B=A.*phase_mask2;B=frt(B,0.45);%ciphertextfigure;imagesc(abs(B));colormap(gray);title(’encrypted image’);%%%%%decryptionD=frt(frt(B,−0.45).*conj(phase_mask2),−0.25);figure;imagesc(abs(D));colormap(gray);title(’decrypted image’);

       IV. Gyrator transform

      functionqt=gyrator(q,a)% Matlab code for fast algorithm of discrete gyrator transform%qis an input signal and a is rotation angle% Direct DGT[M,N]=size(q);mm=((0:M−1)-(M)/2)/sqrt(M);nn=((0:N−1)-(N)/2)/sqrt(N);[x,y]=meshgrid(nn,fliplr(mm));[u,v]=meshgrid(mm,fliplr(nn));p1=exp(−2*j*pi*x.*y*tan(a/2));p2=fftshift(exp(−2*j*pi*u.*v*sin(a)));qt=p1.*(ifft2(fft2(p1.*q).*p2));end

      [2] Refregier P and Javidi B 1995 Optical image encryption based on input plane encoding and Fourier plane random encoding Opt. Lett. 20 767–9

      [6] Liu S, Guo C and Sheridan J T 2014 A review of optical image encryption techniques Opt. Laser Technol. 57 327–42

      [7] Chen W, Javidi B and Chen X 2014 Advances in optical security systems Adv. Opt. Phot. 6 120–55

      [14] Garcia J, Mas D and Dorsch R G 1996 Fractional Fourier transform calculation through the fast Fourier transform algorithm Appl. Opt. 35 7013–8

      [18] Unnikrishnan G, Joseph J and Singh K 2000 Optical encryption by double-random phase encoding in the fractional Fourier domain Opt. Lett. 25 887–9

      [19] Unnikrishnan G, Joseph J and Singh K 2001 Fractional Fourier domain encrypted holographic memory by use of an anamorphic optical system Appl. Opt. 40 299–306