is infinite. Will it occupy the whole place, then? And how? What then will be the nature of its rest and of its movement, or where will they be? It will either be at home everywhere-then it will not be moved; or it will be moved everywhere-then it will not come to rest.
But if (b) the All has dissimilar parts, the proper places of the parts will be dissimilar also, and the body of the All will have no unity except that of contact. Then, further, the parts will be either finite or infinite in variety of kind. (i) Finite they cannot be, for if the All is to be infinite, some of them would have to be infinite, while the others were not, e.g. fire or water will be infinite. But, as we have seen before, such an element would destroy what is contrary to it. (This indeed is the reason why none of the physicists made fire or earth the one infinite body, but either water or air or what is intermediate between them, because the abode of each of the two was plainly determinate, while the others have an ambiguous place between up and down.)
But (ii) if the parts are infinite in number and simple, their proper places too will be infinite in number, and the same will be true of the elements themselves. If that is impossible, and the places are finite, the whole too must be finite; for the place and the body cannot but fit each other. Neither is the whole place larger than what can be filled by the body (and then the body would no longer be infinite), nor is the body larger than the place; for either there would be an empty space or a body whose nature it is to be nowhere.
Anaxagoras gives an absurd account of why the infinite is at rest. He says that the infinite itself is the cause of its being fixed. This because it is in itself, since nothing else contains it-on the assumption that wherever anything is, it is there by its own nature. But this is not true: a thing could be somewhere by compulsion, and not where it is its nature to be.
Even if it is true as true can be that the whole is not moved (for what is fixed by itself and is in itself must be immovable), yet we must explain why it is not its nature to be moved. It is not enough just to make this statement and then decamp. Anything else might be in a state of rest, but there is no reason why it should not be its nature to be moved. The earth is not carried along, and would not be carried along if it were infinite, provided it is held together by the centre. But it would not be because there was no other region in which it could be carried along that it would remain at the centre, but because this is its nature. Yet in this case also we may say that it fixes itself. If then in the case of the earth, supposed to be infinite, it is at rest, not because it is infinite, but because it has weight and what is heavy rests at the centre and the earth is at the centre, similarly the infinite also would rest in itself, not because it is infinite and fixes itself, but owing to some other cause.
Another difficulty emerges at the same time. Any part of the infinite body ought to remain at rest. Just as the infinite remains at rest in itself because it fixes itself, so too any part of it you may take will remain in itself. The appropriate places of the whole and of the part are alike, e.g. of the whole earth and of a clod the appropriate place is the lower region; of fire as a whole and of a spark, the upper region. If, therefore, to be in itself is the place of the infinite, that also will be appropriate to the part. Therefore it will remain in itself.
In general, the view that there is an infinite body is plainly incompatible with the doctrine that there is necessarily a proper place for each kind of body, if every sensible body has either weight or lightness, and if a body has a natural locomotion towards the centre if it is heavy, and upwards if it is light. This would need to be true of the infinite also. But neither character can belong to it: it cannot be either as a whole, nor can it be half the one and half the other. For how should you divide it? or how can the infinite have the one part up and the other down, or an extremity and a centre?
Further, every sensible body is in place, and the kinds or differences of place are up-down, before-behind, right-left; and these distinctions hold not only in relation to us and by arbitrary agreement, but also in the whole itself. But in the infinite body they cannot exist. In general, if it is impossible that there should be an infinite place, and if every body is in place, there cannot be an infinite body.
Surely what is in a special place is in place, and what is in place is in a special place. Just, then, as the infinite cannot be quantity-that would imply that it has a particular quantity, e,g, two or three cubits; quantity just means these-so a thing’s being in place means that it is somewhere, and that is either up or down or in some other of the six differences of position: but each of these is a limit.
It is plain from these arguments that there is no body which is actually infinite.
<
div id="section24" class="section" title="6">
6
But on the other hand to suppose that the infinite does not exist in any way leads obviously to many impossible consequences: there will be a beginning and an end of time, a magnitude will not be divisible into magnitudes, number will not be infinite. If, then, in view of the above considerations, neither alternative seems possible, an arbiter must be called in; and clearly there is a sense in which the infinite exists and another in which it does not.
We must keep in mind that the word ‘is’ means either what potentially is or what fully is. Further, a thing is infinite either by addition or by division.
Now, as we have seen, magnitude is not actually infinite. But by division it is infinite. (There is no difficulty in refuting the theory of indivisible lines.) The alternative then remains that the infinite has a potential existence.
But the phrase ‘potential existence’ is ambiguous. When we speak of the potential existence of a statue we mean that there will be an actual statue. It is not so with the infinite. There will not be an actual infinite. The word ‘is’ has many senses, and we say that the infinite ‘is’ in the sense in which we say ‘it is day’ or ‘it is the games’, because one thing after another is always coming into existence. For of these things too the distinction between potential and actual existence holds. We say that there are Olympic games, both in the sense that they may occur and that they are actually occurring.
The infinite exhibits itself in different ways-in time, in the generations of man, and in the division of magnitudes. For generally the infinite has this mode of existence: one thing is always being taken after another, and each thing that is taken is always finite, but always different. Again, ‘being’ has more than one sense, so that we must not regard the infinite as a ‘this’, such as a man or a horse, but must suppose it to exist in the sense in which we speak of the day or the games as existing things whose being has not come to them like that of a substance, but consists in a process of coming to be or passing away; definite if you like at each stage, yet always different.
But when this takes place in spatial magnitudes, what is taken perists, while in the succession of time and of men it takes place by the passing away of these in such a way that the source of supply never gives out.
In a way the infinite by addition is the same thing as the infinite by division. In a finite magnitude, the infinite by addition comes about in a way inverse to that of the other. For in proportion as we see division going on, in the same proportion we see addition being made to what is already marked off. For if we take a determinate part of a finite magnitude and add another part determined by the same ratio (not taking in the same amount of the original whole), and so on, we shall not traverse the given magnitude. But if we increase the ratio of the part, so as always to take in the same amount, we shall traverse the magnitude, for every finite magnitude is exhausted by means of any determinate quantity however small.
The infinite, then, exists in no other way, but in this way it does exist, potentially and by reduction. It exists fully in the sense in which we say ‘it is day’ or ‘it is the games’; and potentially as matter exists, not independently as what is finite does.
By addition then, also, there is potentially an infinite, namely, what we have described as being in a sense the same as the infinite in respect of division. For it will always be possible to take something ah extra. Yet the sum of the parts taken will not exceed every determinate magnitude, just as in the direction of division every determinate magnitude