Владислав Волгин

Приемщик автосервиса: Практическое пособие


Скачать книгу

обслуживанию и ремонту автомототранспортных средств” (утверждены постановлением Правительства РФ от 11 апреля 2001 г. № 290).

      9

      Диаграмма Ганта названа в честь Генри Ганта (1861–1919), предложившего свою диаграмму, состоящую из отрезков (задач) и точек (завершающих задач, или вех), как средство для представления длительности и последовательности задач в проекте постройки кораблей во время Первой мировой войны. Диаграмма Ганта оказалась таким мощным аналитическим инструментом, что в течение почти ста лет не претерпевала изменений. И лишь в начале 1990-хгг. в нее были добавлены линии связи между задачами.

      10

      Орлов Д. Современный капитал. 2003. № 9.

iVBORw0KGgoAAAANSUhEUgAAAfkAAAG9CAIAAACZHZjJAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR42u19S7IkOZLc3IIi5F1G+hacO1ReoUfIA+QJeg4wvZldHaD21eva57rWvQWNT5lKe/aBe8QL9/CPmkSmxPPwD9wAKAwGg9q//Pf/9j/00UcfffS59udf7N+QXEVUm1Kv1CspdSusV2+RSL1Sr7Beot4ikXqlXmG9RL1F6pVIvcJ6iXqL1Ct5jXp/++23f/uf/2afv/zrX75///63v/3Ht1++2Z+//vqrtCesV2+RSL3XUa/hu51m+I4///nPf9r3v//n36U9Yb16i0TqvY56DdY91sPYF9YL69VbJFLvxbEe1j2+/Pnnn7/++qvZ/n/517/89a//juN2if1pH/vJToALyA7y+Pfv3+1/GzPs5D/++MP+tGvtYyfztvanXYgzw+Xhu53/48cPK4N97Cq7hMX7/fd/2E1w0J9PKctvd7Pv+W7CevUWidR7cay3j2EfXPZAcPvJ/sRPf3yIfbEjuApefvtiJxuMcqjgcbstnP4EWX85UBi4zEsm37GKgKtQVBwHvufzIV35eTeUincT1qu3SKTeW9j1hn1w3xuAmvELMCWA2nf7CVawx/QSoA2UzeiG6W04a1f5W9HiXon1dgfMEuwqfx+UNhTJS1n+7m7CevUWidR7Fx8OTF1au3bcrGCCrx3HGABghb3cATRvaI8w0z54igxnAbjhcjw6rBhjAgGXS15dsBLm83nDsvzd3YT16i0SqfcWWE9MhLsDvvjOrrdrEbczwXrgKU7jrWCqm6y063ETeJb8fQy47XieH/h3yeXv7iasV2+RSL2XVS+dNoRg+riJ+6W/nguhc6wHwgKU7Scuz9pzs++l+86boBi4z++//8NQ3v6Es6jD+lz+8m7CevUW1abUe1n1ci8VfB1//eu/Gw7aF6AnMR1RLgxZQZAMfDhYmy2DZyAIlbFr8Sv8NgjCwWowkJcnlLfCTeyDeFDcB48GfPvQoGzXh/KXdxPWq7eoNqXe+6q3NJa/LgavmDdwPHjOkfKu8gvr1VskUu+l1OuDGl8oZteHIz4c87WDykajiLBevUUi9V5EvX//z79//5CXb6PN25ee29D0rvIL69VbJFKv1HsX3Qrr1VskUq/UK6yXXKi32MQTEQX4IAbgx48fPPLE+r7U+4RDwObpDCYBzwliP6TeL97hzz//3MK7IqyXnLK3IGiMrBoIWH6aZ0PqfU5QC/TMgopd6n3iKlMdjRXuOZII69Vb/t9+DaAMGEX8Eck+WB90bgglrH9CvTY3xZQIoompsF69pUYZ6ypgCOGRyQ4RUK16Zle7tiOMHT85BbErhBteeD6mEXg6LimZY3/8+IGHYo87PU7YRpjpZ2nowT2S3+UrOYy2w3rAvf9ObttQL1lvmZu3Y8GF7win4YuvwVzj+DVoeJGYd0/1WjGskHhZvA5/YslZPLwdi41fR8Nj7O/zkH78hWy3vjvM+ZDLkgvrJV/FerKIeNyZbCK3HjXZaB4IY/lTYA0MzCH+p5I5FjvLyQNlJ2DY6Ohn8dOaDfFvx3oMSAizw9uNz9y2ePfMoBL0Frh5OxZc+7MkY5ns9c8anhPz7qxee1O7Cua8tQqSJZBR0msABMi+WWIuNWlIT+gnDEU8n76m+T3LkgvrJV/CenKlrsd60nyX5wTCWP8TekU4CIYQf0nJHIuhgu3e7x0v6Wdx+SmwnlvqAe6cc/CNQMwC1U30Frh5Jyy4maxxoiXc6lFi3j3V68kgoSuDb6BkYKOEuzIUGy1q0pCe0E/AeqhrUmX+e1dyYb3kS1hP0MxY3zG12pGS2bUkjOWtwFsClkF/bYCw0TDHDsd4hVkzx4CSfhaXl2MSc1zAZXQcHw7sU19UmJzAL9jRE71lzO1YcEvira7GJ8S84Id5mmJ3O6yHfy8jJqdN+fUnDek5/Xisx0COUi3yIS+WXFgveRjrYXGUuDMBEQOgjtk1E8YGUxQ2Fw/+9iEjJXnI92cfCCR/Jf0sOQK7MSkU5iBYH/CCRaWtOtdbUFfHgmtHSvWWt5oT85Iv/r1Yj0J6rKdTZWIdl+rKPMbP6SdgvS/MHe36EOiNhQj+aUpU4NR2vQX+EB+dFqIwuxaJZdKS2bX0j/s/ScfK87NLZzTMsew29Gb4Ygf6WTSnkKSiLMx7sd7rHCiTp1bZX9/pLairY8G1QYLq9dhU3qq8yWQJ4S1Y78d1768HzT293mGRs1NXxxi8Xj8Z62EhcWFs0V8/L/lZ7foy0Hsj6h9h/fi8iwet0B/xpKk5QoDrrp7ZlednwtjhlmoRh2NPtI7B8+FM8KEyJXOsdz6Q+5tHMv0svKKTmCJGXDwxNX75XipUhI/W8MMn9ODfpdRbDuToOHWDeu3Rkxovb4JQK/jEXxLa9HX1WjlXxuEQZ0Kxy4bk77NeP+FC1Jc9CP/fNw4n2DJlhnjJuwzPPFkOIQHWdl8bkt8xxyJ20H56ux2wW2fZgtvWatCDMvR5qE0V8idvqtvjYn0XI+xDj+EO607GChJDkoPViRPC+Ik/fbQyfiofmu0ammzv6kWbYn3wG8Kye+EjOuZYGEdmS77Kfjw+GG3BbZtr0C90C+uF9W/D+jJG2Ice+zRdXUCxwYf9RPPQm0sG9PBZ4xLMvzA59QHjmBuWDx19IrF3zU62q81ygei13CMdc6wN5IyMvgMYbcRtu0MNCuuF9c9gfRcjHL5jHaM7GTZ7F9/qt4RgpS5EFyAmt3vorbBeIvVKvcL6TbB+NOGrxOXxOf60PBl+Xhzx0d82JJDwi1v/J2DdPbQM2RbWC4wkUq+wfi3Wd+Gr/jtN7O5k+Nbh/fTOGWA9IwgXDfPyoWMaP67eIjCSSL3C+v8Pml3MZRe+ytBj7zrvTsZyH8LsRmIUYZiwneyDTEqsn/vrfci2sP6FcihG8rOo1zT2ks2WUq+w/gVtMYR1M1gVga52Qhe+6kOPPTVKPhlxOIbm+J7jcMgSxS08w4XrBPTPDy1Dtn3gs3rLc3JYRvIjq5csoWirZ2T3FdZf1q5/2vOzv9X8RlP9br3lyIzkR1YvrI3tklOr9Qrr3+D52X9PzVse+q7eMifszkzfawjN1++K2IGR/ERglInsy7cD6QjDE3x8KreVgofLDwxhH0m3o+WwrTcT94+fMRrcf+fpWEL+g65Z5puMz8kYEMlNMoZJZwnNdfEmrDjEE+JWnOaCPAauCL+B/JpYv1Ho8QEf+l4wei2h+UO7IvZhJD8F1ndE9vntAGF+vwjhhsQSXpnlPpJuk8qRW28g7kd8B8l/8L7kxA75D7pmWd4kd4Q5sw3YdUBA5Nmq19wkHwHFE3NOPEfRKp7Lq83UNsX6kul7DaH5+l0R+zCSn8WuL4ns89uVXLgwaTMN5Gj2kUxY74+P9SDu98X27wv4DvkPumbZ3SSwUc5J6DwBZ4jYXrxJPkJ2PLvtc6vuwnphfduFSsLujukbbpwJofn6XRH7MJKfBetLIvv8doghzvopldkpbawgZD8s1ucX9H8yxjrQQpTNsrsJOwVWv+ldLDsLoTls31m8CXfqhNphhOFzvjVhvbD+Mbu+ZPr23oDOrl+/K2IfRvITYX0msi/fLufBmNj1E6XNCdmPjPUTk3y4DAHeAVI2y0W7PuzOKTsLo7QnE5HyJtypE2oH5F2hBoX1wvoN/fWZ6Ruu5LyDIU8U1uyK2IeR/ERYX/rr89vRy5z99VCmdz3PlTYhZD8y1o/e1U5VBKAsm+VKf70fF3NnwYXwF/ntO4s34U6d4DtFhXrHvbBeWP9VmYQWdJTxnB13hObrd0WM7RnJz4X1gXJ18naIG0FAjnev5TicUe0jWSRkP1rrzczvowqhoRiAhvCVslmOPg6HyRh4q3lnCdt3Fm/C8CowTvs4HMRccQx4FO6F9cL6vX0RUu8N9fZe9QKyx0+K7HuqV1iv3rKTnGWDwtHUew29vVe9sKPBdHtb9Qrr1Vv2kBNtUDiUei+jt/eqt8t/cCv1CuvVWyRSr9Qru16i3iKReqVeYb1EvUXqlRxWvYcixBbWSwRGUq/kZeo9LCG2sF4iMJJ6Ja9R75EJsYX1EoGR1CuZqbcjxAYFzRcJsbEvqdwSZQ8FL816bmE7ze91yvmRQHUQ9gOybChwyTg9Ki7r9XTHwnqBkUTqPbR6FwmxQSzzBCH26LlAPNuzp8dZwy1MunyPxQR6z2OBcpKSgW9UMk6Phql7Jd2xsF5gJJF6j67ejQix12A97XQcX8MtjFkF0gbAp+Rv67nqUDbu50K21NEwTo+GqXsl3bGwXmAkkXqPrt7tCLHnuI+ZxKPcwuAd4qMDsSXZj4HXmWjav3U43jF1r6E7FtYLjCRS7wmwfiNCbNCT2ScAKH3u3pdCP8ycWzg8sSMxJnxjAMgwnbG+Y+peQ3csrBcYSaTeE2D9poTYpQ+HK6KPcgsDcG38QDlz+gewNZDoGA4fZCv0eR8z1pdc1ivpjoX1AiOJ1HsOu34jQmyIp8VmfA7SBjzELQz/Pjz1+D/E4diRQHTMqzwJc2acHhWX9Xq6Y2G9wEgi9Z4A6+9D7LydboX1AiOJ1Hto9d6K2FlYLxEYSb13VO/diJ2F9RKBkdQr9Uq+hvX66KOPPvpc+yO7XpaRROqVeuXDkai3SKReqVdYL1FvkXolUq+wXqLeIvVKpN7jYT024OLzl3/9i/1JxobJBlzJMXsLtoazNskigo/2pwiMpN672/WgVvB0PNyCLDldbyEFx+SIRGAk9d4R60EJTTp8s+61b01YLxEYSb1Xw/rxQb5DljgDfQ8NoFuDWwD/4zj5g8DXQ3cQDvrkWMjPwjvwJqR7BrPz+EkCB6I7nGxHJncOZeDQZSfg8pD6C8/69ss3kMaxPBjeFr93TyQ/NWiJ8luQr84r8C1Yn3Xua8c7gkAL5TVPfZLmG4xR89r3N/GaRHV4I8OfBu1BsTiIk6n2XAbWPp5ICiqWDazoaOprakFgJKy/INaPn5RDoF0O9MrsTmQQBeMaf0UPBGr4Hs47gH00nENPkf3PJF5AJTwI1G7dnXMZPDQDGghPdgdySfNx/o3WfC/fGix0GDxAuRfeApllwlu8C+uzzlk7REx7C57P01h4zAJ5E777pPbtz9B+/NP5OFQQ78NkbLwKqG3fyzL4xSeD9VD7uCeXowRGwvr7Yj06vCfk9FgPlGSv8xYWjK/c273pBHPSnwO+adwWPdAKQObPQPFc3rksA66lqUiaf0IzHwfr8iGsL5/oLVMkqQlvganSnlifPwDTUue4CgkcCOUc7K3MofCwi/1NcPNJ7dsJQdu+OpC5LWuJtc+rYIiAe3ZSBpzskzzwnnbDMA4JjIT1N8L6Pz9k/CTXz/lqPYyiI3n3CDsPehQNau/lQLp33+twFafhHlsD1OY7wz9QlgHHvZMHx2nsh8fRPxDKUB4vnzjPGFC+RWCv3s2un+icpj3mJR6mA5QHrAy2c6gj1kJuPyxJMLTziMi6YC6eeRk4ULH2edwu5/3pvOqizgRGwvqrYT06pzfivJhFxmRX6+16fEd6XLvD3DxciZIw1jAgze16j/WwGYOHvXzQc3Y98gk88RZfd9w/ivVznWMlIwz2HJPW2/U+YxwqImN9Vx0d1tNdwyTOkzJ4rPezSfsTKapZzt+cZBNHYCSsvxrW0wbnep0X67crPde+l2K6DaeBd2H7noa8MDjfm4ETlJz763mtd0fgPt6r7h/3dX89cIcOZW8ernmLPbF+rnMUzyex9BFZT/jrifgZ61EdBGs/xZlgPRvVvAx4XDiHr7bek7Y1GIX9EJxY32R3y9bqhZHKVX37nsHtdljv83uVJj9+5Xdv2OY4HJxJvz9Og+UbYlEYE2LmpG/ZDL0AFoQ7L8bhAGXKOBxcbo/jYuBL4nDYaRGH498irCt6/QSo/XpvWbOXqtN5Hpx4N+9pWYzD8XUEv5A9CKrLcTh2BLmeifUhKMg3Bp8UdDRxOLicJQ9xOHYa12YPEoeDBoYAIZpWTC4qrH9a/MpN8DTcGuvn14TB8Pgzr1DH6i2LYiBo4OJjYwA6YTCw0zpv1UHktavf+zR1zn2hYT/7VOt9TjD/y6ZMmNwL66MDZ/GIsP7svYWR7F5vPhsyhIExwvotnDlIMJ39DH5fCH/FWgjmW/54nu6snLB2+xXOiPV+t1AwVqDncifHaPaChAk6d2884RUoq/IoWH86oXK7FUhhfTmiTxZLzyIv3622Z2cBT0lpinKyhcEAiy7BvYbj3TLG4kJUd+FJsZ7hG+VD0drLnRxQeIj0HWmHhw/5W7/aV1alsF5yODCSenfA+gyyfgzGYgODVjnDhqGK6NgyPGkRhroLr4r13U6O4YKMS0WZPe7njk9H8fmqFNZLhPV3Ua9ZfFjVD+u0I+3e4J9hmRHHu20Ha0zO8sKr+nAmHj97cY6mQVH2k10bsJ4Rbg/tztlaycJ6gZHkcOqF2x02NcDIL4lN7HpiPUNRZdd7hWSfJPbWceYUsB47geycEutNIRiG/VU4iK2Rsuslwnqpdwb0wUKHie23Z9PJ6zmdsCSL79z2IX89pYu57Pa70NDOfDDj5zbvvI8kvM56f72vSmG9RFh/cfXCzPQxHp62gc6cMngD5j/jcAjNXRyOdylws8JV43Ag2EvFlwp7qfJODoSiYZTNsTSehCOv/1PJisORCOul3heX7eyBxWq9e2O9jeEggLX/Ped4GH+6iFQYFGRsz5ToHNxgp5SU6IvRqZPIVsyCubM/l7wjQBcYPfG4Lio5JAYY60KVvU10kKBvYb3Ue02sxxIBpicAzdGH9OaIVG6IB5R7YgNPiW539tEFmRJ9jberi2zFcyclHxUBurD+CSnbQJcYYPShynmf+nGcyKcAozAiqvVKlrHer7+TirJcL+4iUj3LBEYLruCTEp1L28T6zOe+iPVlZCsJzWnCd0ELgQBdWP+ElG2gSwwwlkKVF7H+LcEhAiOp95pYX7ItTuJA8xp0uZZN7xCA1dt6o6JEH1Me+S6yNae7mwQjc/5RbkNXb1kvucY7TvwuVJkMdDZ4MF9Vrv23BH0LjKTea2I9+m3AvkkcaIf13vjyM/TATQjJlOhzu76MbMU59PAyf+zcrke2istkTj8C1pdLIPNQZc6xWBey64X1km2xHo547Nmz7wbK+L+LA+2wnmmPQtAofvVu1pISfY71ZWSrT++HAthbTIKRA1WvesursL5MDDAPVc51IX+9sF6yLdYDfLmsOonDGU1sKbND+DicYMUHl1GmRJ/H4eTIVn8OWdr9hoVJHI5nS1dveQ7oQxvIiQHmocqsC/jfFIcjrJfsgfWvtfIgZn/RS+O76Bkp0dVbpF6J1Cusr7GeyecCjp+REl29ReqVSL13x3rGvAdyPu5vukmGHfUWqVci9V7crpeot0i9Eqn3iFivjz766KPPtT+y62UZSaReqVc+HIl6i0TqlXqF9RL1FqlXIvUK648o2yV/UW8RGEmk3jNhPRK4cEfrBVgEELb//fv3K7HfLPYWbksmuTQ2OrBm1Qe2ACOfTAq0EPxzZ7I2Yb1khvUhtzp2pZ+9Gph9xbA+s6Vfu7dkjrD9WcPuBkag7vGjKZl8JML6Q2A9uM/C7lYmLTmpYJpy294irH8LGPnkDZ7gTyKsPwTWY/qZWaWwDzan+uOoAHKrwGdr1o2dxjRV5EErmdQ8rRXJEZmyDv9zX+4k53qmx7KXQg4N/8RA2kV3B4hzyWvvz7E/eWfcxJ/gv3e5ElFCOFLI9fZCFHgC6/NLTTRTJowsdR604ZMKlMkI2