was fallacious. “The truth is,” Peirce wrote, “that elementary geometry, instead of being the perfection of human reasoning, is riddled with fallacies” and its study really “ought to begin with the theory of perspective.” Peirce pointed out that for Lobachewski, we cannot be sure that “the infinitely distant parts of an unbounded plane represented in perspective by a straight horizon” would actually be straight—it might be “a hyperbola like the perspective of the terrestrial horizon”—while for Riemann there might not be any line at all, as we might be back to our starting-point. As Peirce wrote elsewhere, each view yields a different philosophy: elliptic, hyperbolic, or parabolic, and Peirce had been leaning toward the hyperbolic for quite a while.77 He concluded his review by advocating for a “new synthetic exposition” of non-Euclidean geometry—what he had proposed to Halsted.78 There is some evidence that Peirce did not altogether give up on his investigations of curvature, as he told Newcomb he had; in February 1892, Risteen wrote that he could give Peirce a list of about twelve “determinations of stellar parallax that came out negative” if he wanted them, information related to Peirce’s curvature investigations.
On 29 January, Garrison wrote to apologize to Peirce for unthinkingly sending the 1891 English edition of Dmitry Mendeleyev’s Principles of Chemistry to someone else for review: “By way of compensation I turn over to you rather than to your rival Tyndall’s new book,79 which has several “men of genius” in it & other good matter. I trust a simple notice of it can be made to suffice.” Garrison offered to let Peirce add something about Mendeleyev’s Principles if the occasion arose and he asked Peirce to look over a letter that Werner Stille had sent about Peirce’s “Comtist Calendar.” Peirce wrote up a review of Tyndall which never appeared, but in March he would get a chance to add something about Mendeleyev (sel. 48). The letter from Stille, with an editorial reply written by Peirce, appeared in the Nation for 11 February.
By February, Peirce had started working on his Lowell lectures on the history of science, no doubt making use of the resources of the Astor Library. He decided to begin with a look at the classification of the sciences.80 This was then a frequently discussed subject, usually with reference to the well-known classifications of Comte and Spencer. Comte, although given credit for having made the first clear distinction between abstract and concrete sciences, had proposed a classification of the sciences according to their generality, while Spencer arranged them according to their abstractness.81 In his c. 1890 definition of “science” for the Century Dictionary, Peirce gave a classification that arranged the sciences according to “their degree of specialization,” but in February 1892, when he sketched essentially the same classification for use in his first Lowell Lecture, he referred to it as one based on “order of generality” (sel. 46 and the page opposite it).82
Early in March 1892, Peirce sent Newcomb a question involving “fundamental points relating to infinity” and said he would like “to see how you would answer it.” It was a problem involving parallel lines and an infinite series of equidistant perpendiculars. On 9 March, Newcomb responded: “Your last letter seems decisive in favor of a proposition which I have often been inclined to maintain, to wit, that all philosophical and logical discussion is useless. If there is any one question which illustrates the correctness of the doctrine of infinities, always maintained by me, it is the very one suggested by the demonstration you and Halsted sent me. I have always held that infinity, considered in itself, could not be treated as a mathematical quantity, and that it is pure nonsense to talk about one infinity being greater or less than another.” This astonishing response, as Carolyn Eisele put it well, reveals Newcomb’s “extreme conservatism,”83 which refused “to entertain a hypothesis which had not yet come completely unscathed through the acid test of experiment…. Peirce was, without doubt, the more daring intellectual of the two.”84
Peirce’s opportunity to write something about Mendeleyev’s Principles came when the editor of the Nation received a letter, signed “C. De K.,” responding to the review of 4 February (written by Peirce’s “rival”) in which it was claimed that Mendeleyev was the discoverer of the Periodic Law. C. De K. acknowledged that Mendeleyev, along with Lothar Meyer, had been recognized by the Royal Society of London “for their discovery of the periodic relations of the atomic weights,” but he claimed that the priority for discovering the Periodic Law belonged to John A. R. Newlands, a fact later recognized by the Royal Society. C. De K.’s letter appeared in the 3 March issue of the Nation followed by an editor’s reply written by Peirce (sel. 48). Peirce pointed out that the Royal Society “did not commit themselves very far” in their acknowledgment of Newlands’s contribution and that “the step taken by him was not a difficult one.” Peirce named Josiah P. Cooke as the “principal precursor” of Mendeleyev for having “first proved that all the elements were arranged in a natural series.” Peirce suggested that “[a]fter the new atomic weights came in” it was inevitable that “every well-informed and ingenious chemist” would begin “speculating upon the relations of the properties and atomic weights of the elements” and that these speculations would naturally be laid out in tables. He gave, as an example of such early speculations, a table based on one he had published anonymously in 1869 (W2, sel. 25)—which he ascribed to an “obscure American chemist”—and noted that “this was all, if not more than all, that Newlands did.” It was Mendeleyev alone who “had the sagacity to discern the true scheme of relationship,” thus accomplishing one of the greatest inductions in the history of science. Peirce concluded his editorial reply by speculating that the atoms of the chemical elements may have “been built up from a few kinds” of subatomic “atomicules that are Boscovichian points,” an idea he would take up in his fourth Monist article, “Man’s Glassy Essence” (sel. 29), which he would begin writing a few weeks later.85
In March, Peirce contributed five notices or editorial responses and one review to the Nation: his note on Mendeleyev above; an editorial reply to a discussion on the state of mathematics education in America (3 March); an editorial response to J.McL.S.’s remarks about induction, especially to his claim that induction is not inference (10 March); a perfunctory note on Halsted’s translation of Bolyai’s Science of Absolute Space, which Halsted had personally sent Peirce in early February (17 March); a note on William James’s abridged edition of his Principles of Psychology in which Peirce briefly took James to task for carrying further his “natural science” method, “which consists of ignoring all general doubt”—the doubt that should arise when truths based in experience are extended so far beyond the domain of observation (whether in molecular physics or in psychology) as to become dubiously metaphysical, thus entrapping readers “into confident but dangerous and unexamined assumptions” (17 March); and a review of William J. M‘Clelland’s Treatise on the Geometry of the Circle (24 March).
The Nation was providing Peirce his only relatively steady income, far too little to meet his and Juliette’s needs. They were sinking into serious debt. On 8 March, the Court of Common Pleas of Pike County issued a mechanics lien on Arisbe for $464.99 for “carpenter work and material furnished.” Peirce had to bring in more money. His attention returned to the prospect of public lectures. A selection from about this time that might have been intended for a popular audience, either as an article or lecture, is “Keppler” (sel. 49). Peirce’s proposal for his Lowell lectures had called for three lectures to be devoted to Kepler, and so this selection may well be the start of Peirce’s research, but it also connects with his renewed attention to the study of great men, an attractive subject for a set of popular essays. In this paper, as was typical for Peirce, the reader was told that “[t]o gain any idea of a scientific research, one must look with one’s own eyes and brain at the things with which it deals,” and that 1892 “happens to be a good one for watching Mars.” Peirce then gave instructions for how to record the path of Mars on a star-map. As in his review of Harrison’s New Calendar of Great Men, Peirce reminded his readers that Kepler’s momentous achievement had been made possible by a rare university appointment that actually provided the opportunity and means to do his singular work, a necessary condition for greatness. Peirce stressed Kepler’s “admirable method of thinking” which consisted in forming diagrams to represent “the entangled state of things before him,” “observing suggestive relations between the parts of