Sharon Oviatt

The Handbook of Multimodal-Multisensor Interfaces, Volume 1


Скачать книгу

54

      V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti. 1996. Action recognition in the premotor cortex. Brain, 119:593–609. 75

      E. J. Gibson. 1988. Exploratory behavior in the development of perceiving, acting, and the acquiring of knowledge. Annual Review of Psychology, 39,:1–41.

      E. J. Gibson and R. D. Walk. 1960. The “visual cliff.” Scientific America, 202:67–71. 62, 63, 64

      J. J. Gibson. 1979. The Ecological Approach to Visual Perception. Houghton Mifflin, Boston. 69

      J. Grezes and J. Decety. 2002. Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia, 40:212–222. 70

      A. H. Hall., A. Simpson, Y. Guo, and S. Wang. 2015. Examining the effects of Preschool Writing Instruction on Emergent Literacy Skills: A Systematic Review of the Literature. Clemson University Press, Clemson, SC. 67

      K. L. Harman, G. K. Humphrey, and M. A. Goodale. 1999. Active manual control of object views facilitates visual recognition. Current Biology, 9:1315–1318. 58, 65, 66

      O. Hauk, I. Johnsrude, and F. Pulvermüller. 2004. Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41:301–307. 75

      D. O. Hebb. 1949. The Organization of Behavior—A Neuropsychological Theory. John Wiley, New York. 55

      E. G. Heckenmueller. 1965. Stabilization of the retinal image: A review of method, effects, and theory. Psychological Bulletin, 63(3):157–169. DOI: 10.1037/h0021743. 56

      R. Held and A. Hein. 1963. Movement-produced stimulation in the development of visually guided behaviour. Journal of Comparative and Physiological Psychology, 56:872–876. 56

      K. H. James and T. Atwood. 2009. The role of sensorimotor learning in the perception of letter-like forms: Tracking the causes of neural specialization for letters. Cognntive Neuropsychology, 26(1):91–110. DOI: 10.1080/02643290802425914. 72, 73, 74

      K. H. James and P. Bose. 2011. Self-generated actions during learning objects and sounds create sensori-motor systems in the developing brain. Cognitive Brain Behavior, 15(4):485–503. 75

      K. H. James and L. Engelhardt. 2012. The effects of handwriting experience on functional brain development in per-literate children. Trends in Neuroscience and Education, 1:32–42. DOI: 10.1016/j.tine.2012.08.001. 77, 78

      K. H. James and I. Gauthier. 2006. Letter processing automatically recruits a sensory-motor brain network. Neuropsychologia, 44(14):2937–2949. DOI: 10.1016/j.neuropsychologia.2006.06.026. 61, 72, 73

      K. H. James and I. Gauthier. 2009. When writing impairs reading: Letter perception’s susceptibility to motor interference. Journal Experimental Psychology General, 138(3):416. 85

      K. H. James, G. K. Humphrey, and M. A. Goodale. 2001. Manipulating and recognizing virtual objects: where the action Is. Canadian Journal of Experimental Psychology, 55(2):111–120. 58, 59, 66

      K. H. James, G. K. Humphrey, T. Vilis, B. Corrie, R. Baddour, and M. A. Goodale. 2002. “Active” and “passive” learning of three-dimensional object structure within an immersive virtual reality environment. Behavioral Research Methods, Instruments, and Compututers, 34(3):383–390. 58

      K. H. James, S. S. Jones, S. Swain, A. Pereira, and L. B. Smith. 2014. Some views are better than others: evidence for a visual bias in object views self-generated by toddlers. Developmental Science, 17(3):338–351. DOI: 10.1111/desc.12124. 65

      K. H. James and S. N. Swain. 2011. Only self-generated actions create sensori-motor systems in the developing brain. Developmental Science, 14(4):673–687. DOI: 10.1111/j.1467-7687.2010.01011.x. 75, 76

      K. H. James, S. N. Swain, S. S. Jones, and L. B. Smith. 2013. Young children’s self-generated object views and object recognition. Journal of Cognitive Development, 15(3):393–401. DOI: 10.1080/15248372.2012.749481. 65, 82, 626

      M. H. Johnson, A. Senju, and P. Tomalski. 2015. The two-process theory of face processing: modifications based on two decades of data from infants and adults. Neuroscience & Biobehavioral Review, 50:169–179. DOI: 10.1016/j.neubiorev.2014.10.009. 55

      N. Kanwisher, J. McDermott, and M. Chun. 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11):4302–4311. 69

      A. J. Kersey and K. H. James. 2013. Brain activation patterns resulting from learning letter forms through active self-production and passive observation in young children. Frontiers in Psychology, 4:1–15. DOI: 10.3389/fpsyg.2013.00567. 78

      R. L. Klatzky, J. M. Loomis, A. C. Beall, S. S. Chance, and R. G. Golledge. 1998. Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychological Science 9(4):293–298 58

      K. S. Kretch and K. E. Adolph. 2013. Cliff or step? Posture-specific learning at the edge of a drop-off. Child Development, 84:226–240. 64

      G. Lakoff and R. Nunez. 2000. Where Mathematics Comes From. Basic Books, New York. 60

      K. M. Lee, C. M. Kim, and S. H. Woo. 2001. fMRI comparison between expert and novice perception of dance. NeuroImage, 13(6):907. 75

      R. Lickliter and L. E. Bahrick. 2004. Perceptual development and the origins of multisensory responsiveness. In G. Calvert, C. Spence & B. Stein, editors. Handbook of Multisensory Processes. MIT Press, Cambridge, MA. 80

      J. X. Li and K. H. James. 2016. Handwriting generates variable visual output to facilitate symbol learning. Journal of Experimental Psychology: General, 145(3):298–313. DOI: 10.1037/xge0000134. 60, 68

      K. Libertus and A. Needham. 2010. Teach to reach: the effects of active versus passive reaching experiences on action and perception. Vision Research, 50(24):2750–2757. 65

      J. J. Lockman. (2000). A perception-action perspective on tool use development. Child Development, 71:137–144. 61

      M. Longcamp J. L. Anton, M. Roth, and J. L. Velay. 2003. Visual presentation of single letters activates a premotor area involved in writing. Neuroimage, 19(4), pp. 1492–1500. 72

      M. Longcamp, M. T. Zerbato-Poudou, and J. L. Velay. 2005. The influence of writing practice on letter recognition in preschool children: A comparison between handwriting and typing. Acta Psychologica, 119:67–79. DOI: 10.1016/j.actpsy.2004.10.019. 67

      M. Longcamp, T. Tanskanen, and R. Hari. 2006. The imprint of action: motor cortex involvement in visual perception of handwritten letters. Neuroimage, 33:681–688. DOI: 10.1016/j.neuroimage.2006.06.042.

      M. Longcamp, C. Boucard, J. C. Gilhodes, J. L. Anton, M. Roth, B. Nazarian, and J. L. Velay. 2008. Learning through hand-or typewriting influences visual recognition of new graphic shapes: Behavioral and functional imaging evidence. Journal of Cognitive Neuroscience, 20(5), pp. 802–815. 72

      M. Longcamp, Y. Hlushchuk, and R. Hari. 2011. What differs in visual recognition of handwritten vs. printed letters? An fMRI study. Human brain mapping, 32(8), pp. 1250–1259. 72

      M. Longcamp, A. Lagarrigue, B. Nazarian, M. Roth, J. L. Anton, F. X. Alario, and J. L. Velay. 2014. Functional specificity in the motor system: evidence from coupled fMRI and kinematic recordings during letter and digit writing. Human Brain Mapping, 35:6077–6087. 72

      V. J. Molfese, J. L. Beswick, J. L. Jacobi-Vessels, N. E. Armstrong, B. L. Culver, J. M. White, M. C. Ferguson, K. M. Rudasill, and D. L. Molfese. 2011. Evidence of alphabetic knowledge in writing: Connections to letter and word identification skills in preschool and kindergarten. Reading and Writing, 24(2), 133–150. DOI: 10.1007/s11145-010-9265-8. 67

      L. L. Namy and D. Gentner. 2002. Making a silk purse out of two sow’s ears: Young children’s use of comparison in category learning. Journal of Experimental Psychology: General,