Figure 5.1: Commutative AND function
Figure 5.2: Commutative OR function
5.2.2Associative Laws
Associative laws indicate that the grouping of elements can change without changing the result, provided that all of the operations between elements are the same relationship, either all ANDs or ORs. This means that the order of the AND or OR elements does not change the output result (Figure 5.3 and Figure 5.4).
Figure 5.3: Associative OR function
Figure 5.4: Associative AND function
5.2.3Distributive Laws
The distributive laws allow us to rearrange elements in combinations of AND and OR relationships. Often by rearranging elements, we can combine portions to simplify the circuits. It has two forms: AND-OR and OR-AND. Figure 5.5 shows an example of the distributive law of AND-OR combination, which has the form of:
A · (B + C) = A · B + A · C
Figure 5.6 shows an example of using the OR-AND combination of distributive law. The distributive OR-AND function has the following Boolean expression:
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.