не существует. Даже несмотря на ее очевидную плотность Вселенная в своей основе может являться лишь гигантской, роскошно детализированной голограммой», – считает профессор Бом.
Окончательно же голографический принцип будет доказан, когда заработает устройство «Голометр», который в настоящее время разрабатывается учеными Центра астрофизических исследований лаборатории имени Ферми. Детектор устроен следующим образом: лазерный луч проходит через расщепитель, образовавшиеся два луча проходят через два перпендикулярных тела, отражаясь от них, затем возвращаются назад и, сливаясь, создают интерференционную картину, по искажениям которой можно судить об изменении пространства, сжимаемого или растягиваемого гравитационной волной в разных направлениях.[182]
В геометрии голографическим аналогом является фрактал – геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком. Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных.
Современный космолог Крэйг Хоган сочетает идею пикселизации пространства-времени с представлениями из теории струн и квантовой механики, что Вселенная эквивалент голограммы. Эти представления базируются на том, что поверхность, ограничивающая объем пространства, кодирует всю информацию, содержащуюся в этом объеме. Подобно тому, как голографический отпечаток на кредитной карте открывает третье измерение, так и воображаемая поверхность в пространстве-времени обнаруживает дополнительное измерение.
Понятие «квант» употребляется для обозначения частиц или квазичастиц, соответствующих бозонным полям взаимодействия (фотон – квант электромагнитного поля, фонон – квант поля звуковых волн в кристалле, гравитон – гипотетический квант гравитационного поля и т. д.), также о таких частицах говорят как о «квантах возбуждения» или просто «возбуждениях» соответствующих полей. В квантовой теории положение каждой частицы определяется волновой функцией для описания вероятности нахождения частицы в определенном месте пространства. В модели Хогана каждая ячейка пространства-времени рассматривается как имеющая связанную с ней волновую функцию, что делает пространство размытым (положение частицы известно не точнее длины зерна/ячейки).
Зерно в отдельности слишком мало для измерений. При распространении волн в пространстве они интерферируют с волнами, распространяющимися в соседних зернах (соседних ячейках пространства-времени), создавая интерференционную картину – зону черных и белых полос – которая достаточна велика на отдаленном экране, чтобы быть измерена.
Согласно модели Хогана, чем больше голограмма, тем больше интерференционная картина. Если голограмма достаточно велика, то волны производят некоторого рода макроскопические