Robert J. Marzano

Making Classroom Assessments Reliable and Valid


Скачать книгу

explains that this is a foundational concept in measurement theory: “any single score from a measurement is to represent a single quality” (p. 107). This is technically referred to as making a CA unidimensional (technically stated, a unidimensional test “measures only one dimension or only one latent trait” [AERA et al., 2014, p. 224]). The notion that unidimensionality is foundational to test theory can be traced back to the middle of the 1900s. For example, in a foundational article on measurement theory in 1959, Frederic M. Lord notes that a test is a “collection of tasks; the examinee’s performance on these tasks is taken as an index of [a student’s] standing along some psychological dimension” (p. 473). Over forty years later, David Thissen and Howard Wainer (2001) explain:

      Before the responses to any set of items are combined into a single score that is taken to be, in some sense, representative of the responses to all of the items, we must ascertain the extent to which the items “measure the same thing.” (p. 10)

      Without unidimensionality, a score on a test is difficult to interpret. For example, assume that two students receive a score of 70 on the same test, but that test measures two dimensions. This is depicted in figure 1.1.

      Note: Black = patterns; gray = data analysis. Total possible points for black (patterns) = sixty; total possible points for gray (data analysis) = forty.

      Figure 1.1: Two students’ scores on a two-dimensional test.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4QAYRXhpZgAASUkqAAgAAAAAAAAAAAAAAP/sABFEdWNreQABAAQAAAA2AAD/4QNVaHR0cDov L25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENl aGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4 OnhtcHRrPSJBZG9iZSBYTVAgQ29yZSA1LjYtYzEzOCA3OS4xNTk4MjQsIDIwMTYvMDkvMTQtMDE6 MDk6MDEgICAgICAgICI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5 OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHht bG5zOnhtcE1NPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvbW0vIiB4bWxuczpzdFJlZj0i aHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL3NUeXBlL1Jlc291cmNlUmVmIyIgeG1sbnM6eG1w PSJodHR