со скрытым содержанием имелись в устном школьном фольклоре, но эти примеры чаще всего скрывали пошловатое обратное чтение, как известное многим высказывание Ивана Баркова. Приводить здесь примеры ненормативной лексики не будем, ограничившись только намеком на их существование. Именно из-за стремления авторов фраз-оборотней скрыть в них то, что нельзя по различным соображениям написать открыто, сложнее найти в литературе образцы, которые можно опубликовать для школьников.
Другое направление – составления оборотней, в которых обратная фраза дополняет по содержанию основное предложение, перекликается с ним по смыслу. Вот классический пример, составленный Сергеем Фединым: «Я нем и нежен». Полное предложение, полученное при последовательном прочтение в обе стороны, из «оборотня» превращается в палиндром: «Я нем и нежен, не жени меня!» Добиться подобного еще труднее, чем просто скрыть тайное содержание.
Предложение-палиндром всегда имеет ось симметрии, проходящую точно посредине. Если такая ось окажется в промежутке между словами, то, отбросив вторую половину палиндрома, мы получим фразу-оборотень:
ПИЛ ВИНО | ОН И ВЛИП.
Оборотни – штучный товар, их придумано гораздо меньше, чем палиндромов, а значит в этом направлении огромный простор для творческих поисков [?]
Несколько слов о симметрии математических объектов. Среди цифр двумя осями симметрии и центром симметрии обладают 0 и 8 (с оговоркой, что восьмерка имеет одинаковые по размерам верхний и нижний элементы), а если в качестве единицы брать римское изображение I, то она тоже обладает тремя видами симметрии. Аналогичной симметрией обладают знаки четырех основных математических действий +, -, ∙, : . Знак интеграла симметричен относительно центра. Цифра 3 обладает горизонтальной симметрией (с той же оговоркой). 9 – это горизонтальный оборотень, горизонтальное зеркало превращает ее в цифру 6, тот же эффект дает поворот цифры 9 относительно центра на 1800. Поэтому, чтобы увеличить числа 6 или 66, или 666 в полтора раза, их нужно просто повернуть. В прошлом веке был год, который выражается числом, не изменяющимся при повороте листа с его записью – I96I.
Число 7 в вертикальном зеркале просто поворачивается в другую сторону, но если его записать как разность 8 – I, то зеркальная запись I – 8 означает -7. В этом примере проявляется аналогия зеркального отражения и умножения на -1. Некоторые дроби при отражении в горизонтальном зеркале дают обратные числа:
Римские цифры применяются сейчас редко, но симметрии в них больше, чем в арабских цифрах. Только L=50 не обладает никакой симметрией, все остальные, так или иначе, симметричны. Посмотрите на их ряд и составьте свое мнение о видах симметрии этих цифр и чисел: I, II, III, IV, V, VI, VII, VIII, IX, X, L, C, D, M.
[?-5]
С помощью зеркала и римских чисел можно построить парадоксальную таблицу умножения, в которой дважды четыре – девять, дважды шесть – одиннадцать, дважды семь – двенадцать, дважды восемь