на Запад), и казахский алфавит, созданный на основе русского.
В эстонском алфавите 23 основных буквы, которые употребляются для передачи слов родного языка, и 9 букв (f, š, z, ž, c, q, w, x, y) используемых только в недавних заимствованиях из других языков и иноязычных именах собственных.
E={a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, š, t, u, v, w, x, y, z, ž, ä, õ, ö, ü}.
В казахский алфавит полностью входят 33 буквы русского алфавита, три буквы из латинского алфавита (ү, h, i) и шесть своеобразных букв (ə, ғ, қ, ң, ө, ұ), – всего 42 буквы.
К={а, ə, б, в, г, ғ, д, е, ё, ж, з, и, й, к, қ, л, м, н, ң, о, ө, п, р, с, т, у, ұ, ү, ф, х, h, ц, ч, ш, щ, ъ, ы, i, ь, э, ю, я}
[?-1]
Определите множества, которые получатся в результате следующих операций:
Примечание: В данном упражнении нас интересует только графическая сторона вопроса. Если рассматривать алфавиты так, как они записаны здесь – маленькими буквами, то у русского и латинского алфавитов есть одинаковые знаки: а, с, е, …, поэтому их пересечение не является пустым множеством.
[?-2]
Верны ли следующие утверждения:
[?-3]
Постройте диаграммы Венна для следующих множеств, считая универсальным множество всех алфавитов:
В процессе работы над книгой меня постоянно волновал вопрос: кому это будет нужно? Учитель-словесник отмахнется от математики, зачем ему теория множеств, учитель математики отмахнется от букв, алфавитов, слов, потому что ему всегда удобнее объяснять материал на числах и получится мой труд ради собственного удовольствия. Изрядную долю сомнений вносили знакомые учителя, зачастую именно так и высказываясь. Но меня не покидает надежда, что молодое поколение учителей будет мыслить по-другому, шире и разностороннее. Ученикам никогда не будет интересна нудная, хотя и необходимая, зубрежка правил, и, чтобы не отбить окончательно у них желание учиться, нужно использовать любую возможность сделать свой предмет увлекательным. Кому станет хуже, если на математике ученики повторят русский алфавит, распределение его букв по видам, узнают новые алфавиты.
Топология букв
Еще немного чистой математики, причем не изучаемой в школе, применительно к языковому исходному материалу. Посмотрим на буквы с точки зрения топологии.
Топология (греч. topos – место и logos – слово, понятие, учение) – раздел математики, изучающий наиболее общие свойства геометрических фигур (свойства, не изменяющиеся при любых непрерывных преобразованиях фигур).
Представьте себе, что большие печатные буквы сделаны из гибкого и растяжимого материала, например из проволоки, и их можно распрямлять, растягивать, выводить из плоскости, переворачивать и переносить в другое место. Подобные преобразования называются топологическими. Две буквы называются топологически эквивалентными, если их можно перевести друг в друга такими непрерывными деформациями (не разрешается разрезать или склеивать буквы!). Например, возьмем проволочную букву Г, из нее легко