Е. Л. Пчелкина

Детский алгоритм решения изобретательских задач (ДАРИЗ)


Скачать книгу

мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

iVBORw0KGgoAAAANSUhEUgAAAmoAAAGgCAMAAAAtl7sCAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAAF1QTFRFmpyfw8XH3+DhZmdpSUlKgIKFp6msWFhaNjQ17/Dw0dLUc3V3jY+SxsjKtbe5k5WYYmNl8PDxNDIzRkZHrK6x09XW4eLje31/n6GkbnByubu9h4mMVFVWIx8g////QX2qIgAAGFdJREFUeNrs3Yl64jgWgFF53wip1NrVPfL7P+boXi2WgaSSCjgB/jvfJGljA7JPabMkG/tBMb8x7NXHfOdhPugM2Isf8NkCalCDGtSgBjWoQQ1qUIMa1KAGNahBDWpQgxrUoPZctNZADWrvPkDv+gyTtQXUoHZ5ak4a1KC2AbXS1iUFKNQ2oGaCpcZlblUZbbW28UVr5/5n60I3aZiwhxxX2spt720bR2HU/s1qWzaSUxbu2N7ohpiH2todUcuusn3s9LACavdAzbGQP/0178ucWreM5BkPqZU2UHN/LNQKsTeP7qdQ2/uNu0Nqjd/ezmVvoXYv1IbK50NGcq6ys1NGrbX16F5o5kG2u/9sfV6me1SRmrF7/151yM/meef2FGq1HGas27SmprHXz+pmeSuo3QE1qxdb2gYCZrB9Rk236X+ObrtLcrFQc697akXfzRm1neze94NQG/17y44H1IpGitDKcesGqN1LrlZL+ZaKUfcrFoaNKz9T1c1X6hZqQ18VSs1aW+bUhFchhW/j3yM0LNbUdv4TqnmoKUDvp6429pqfnaJWr6k1UmEL1BpbempVa1e5mvM5aovgBWqje6HwTYqygdr9NAv20hb4YwHazT6T89Q69zNQc3uZnJqxu77WYrMonilAtcnhqWmBSwF6J9Tc1a4HaQIcNQtMbBaUQkvra4GasIrUhl5yu0Rt0EaqUnOvnGwWaA1taITaXn5A7V6ozdq+PNHZEWtS0gk2GF8cBmrFQs1xcVSXpuXka29Sipqss2OJOv5XNZe95KhQuxtqg3a8nujCdbmZ78J12402FgM1QZeouSOnjJpmVJ6a9tXWvgs3pyYdt5Xbb+i02IbaHVB7Rbz5xtQu9LM9F3W9bQKgdqvUhr6foQa1Dai1vp/uA1MMtTuh1vn2KNSgdnUBNahBDWpQgxrUoAY1qF0ttaHp4qBmqEHtktTKcBdmghrULkytk57MnbUD1KC2RV3NUZNpRy53k9EORVzc1U8U2snbtLO/h53t9s4T/+Px6WJXahk3uXzfyprK2k7HTcoA8gJq21MrJ8epjOMZ5jiDKF2xJqOW7fbOE/9gv2bYLkVt+b6VjeOPwviNEmrbUpMsrEvNgs5PbzNx4I5A7PuMWrbbu6nZDNu5qaURRun7VpKRlV2897k78xxlqL2Kmi9NdlMYP79L1EptoNqAzP9Mu732xL+4BHvEdjlq8fv64WZ7Gd1tGhsG4UJt47qaDHbOptVqnuXH84ei1A84lOH5r5l9+xZqDtv3S1Jbvq+nVrqytIuTkqG2fbOgsWay0hiVQamDjs4Xar2djE75Hm28OstuZ6L27ftFc7Xl+yZqxtZNefZFPqD2ujPg8qs6DbX3Q7kctTLOBNcFL2zd6ZyiuNurT/zD6fgng3Y5asv39dRaOzVa8YTaxtSaqdUrYV192f3VdrKugMzZEGoue5Ougd6mNzPzstsZmgUJ2uWoLd9Xl2KQNWJ2UoUbK6htTM0ui6mESs0ylSO9mlFLu72fWgbtctSW71vF+yKlpa72AdRa1dT5rgzbu6ZZTk1Xk2rrnFra7d0n/umCVyprgabvW9kqTGSXCVKNgdqH1NXyiLJqu+WJv/yVqmxxybeHGtSg9mmpfcyJhxrUoAY1qH2qgBrUoAY1qEENalCDGtSg9imphbsDckckjmLPb7RBDWrnpaZDI6EGtYtTK/yd9SKMETBQg9qFqNV+0g3UoHZhao0+JQpqULs0tfQEDKhB7fLUJqhBbYMCVMZD7qEGtctTK/XJGVCD2uVboMYvOwI1qF2ami7RMUINapenpquSQA1ql6em90AN1KB2I1cKalCDGtSgBjWoQQ1qUIMa1KAGNahBDWpQgxrUoAY1qEENalCD2jbUPijefKWuPu6e2kwQUCOgRhBQI6BGQI0goEZAjSCgRkDtc8fD4+MDZwFqG8SjtY+cBahBDWo3Re0XZwFq21D7wlmAGtSgBjUCalCDGtSgBjUCalCDGtQIqEENalCDGtQIqEENalAjoAY1qEENalAjoAY1qEGNgBrUoAY1qEGNgNol4yEuIvoP5wJql40vXtrXJ04F1DbJ1ph0DLVtsjUyNahtlK2RqUFtm2yNTA1qG2VrZGpQ2yZbI1OD2kbZGpka1AioEQTUCKgRUCMIqBFQ2zDsbQTUroDaTZxuqHGRSAXUoAY1LhLUoEYqoAY1qHGRSAXUoAY1LhLUoEYqoHaui1TbUr+9raEGtQ2olRZqUNuE2gQ1qG1CrbCVUjM6ZqJyf42Vtb1L0jDJlkk4Nn5EReH+KPyx/o/Gti5bdPvbZs6O9NFa9+dOxmGkPbKjhsZvK/QF9y1c9lppJqvfpre204+Sv6oSajdArbOFXtxdpDZ6VkZKVon6D9TKXl/rsiMXaq0M+Vn2WI4aat02nabmv4zda54r32GA2tVTcx7KoKnQC+627tyl7/twdTs7yosOZXWa2mS7ci5q5+rgSKFW2WHO9liOamw1zKVzforaqF4n27v36Eb5ZAO1a6c29PXgqQkpueCjy2k0k3ModpPPy9xVn5+l1oumeW+n/MhAzQi+ZY/8qH7WbabQo9bU/GHylSaBPg/6CtSumtpOSkChNrgsRC94G4e6tqHcEx3VQk2LvSEWqW4v36hwv5YjIzVf+i575EeFaArbj1JTrGKBrbu1nnNb26UUh9o1U9MSUylInnNAzZV7u5B91f2KmivzXkXNNJI9vUxtDqChdtvUOnGkFBqpg2cFaOoLEWqDXupUgLqM6IUCdM5aoK7yX7xUgGqztZN88sUClM6O66emVXK5uKW0D2OzQDaarugkb2lFo1FEz1BrsmZBOHJpFhTSeGxONwukp6UKp25dVyvzZoH8Y2ioq107td7fLqhTeeaudhH+KmKBWFS+TMwK0N3Jzo505KpfbTrZ2VHWq56RZzs7Kpv6+6B2zdTMfExtHqXdKdU0Ix2yjVDTDtpETXppT3fhxiMXavohz3bh9k15klrehVtr4wFqV01tiTJkG+U6+7iyVEANalCD2nUG1LhIpAJqUIMaFwlqUCMVUIMa1LhIpAJqUIMaFwlqUCMVUPu4i1RZU1kd7p9mR+m9rCL9SDOcljvr/ra78T+P5z9BDWonqWn0ZT6vakUtzXA6oBaHoB3Pf4Ia1E5S6wqZ57RbZketqS0znA6oVVan6p2Y/wQ1qJ2kJn72TkyaHbWmtsxwWlNrbeN+npz/BDWoPUttNWVlTa3OpqLEOS0yx6CvCh0RfmJSCtSgdkZqjS2hBrW3U2vz2VGnCtB5XrdAO53QYuaT85+gBrXTnR1OWu/8pNlRR82CMMMppybZWOGbBcfzn6AGtec7O6ZsdlSZPfupymY4ragVntrJ+U9Qg9pJakezow6opRlOOTW/AIyZT85/ghrUnq2rXXsqoAY1qEENalCDGtRukxqpgBrUoMZFIhVQgxrUrugiFWE5tUl/F351Ulnjqop3BmoDNaidj9reZtT0kQSJmj3/4kZQu2NqdU5Nnuuig21tPQ+dX/wRalA7CzVjM2pluEuq1OZBlzOFGtTOQq20GTUj+ViZqM3x9jzUoPZ+aq5N0CRq6cEFntqYPXQKalB7HzUjKySvqJlEbYh5HNSg9n5qomyhJpOK+1CArh7OAjWovZ9aMy/U2tYP000jbosZalA7EzWXiWXU1Ng+NQuuIRVQuxZqZl5RK/1aCVCD2rmp1fOamnaz7aAGtbNT2x9S05sHI9SgdvUBNS4SqYAa1KDGRYIa1EgF1KAGNS4SqYAa1KDGRYIa1EgF1KAGtc9/kW4joEYQUCOgRhBQI6BGQI0goEZAjSCgRkCNgBpBQG3DeHx85CRAbYu47xviUIMa1KBGQA1qUIMa1AioQQ1qUIMaATWoQQ1qUCOgBjWoQQ1qBNSgBjWoQY2AGtSgBjWoEVCDGtSgBjUCalCDGtSgRkANalD7pPEtLI38jVMBtcvG90DtO6cCaheOL2RqUNsmHsjUoLZhtkamBrWNsjUyNahtk62RqUFto2yNTA1q28QvTgHUCKgRBNQIqBFQIwioEVAjiFuiZm8roPaJqd3UaYcaF4fUQA1qUOPiQA1qpAZqUIMaF4fUQA1qUOPiQA1qpAZqH3VxSr0rVBuoQW0TatZOUIPaxalJoq0doQa1DajNk21d0ntrq9L9V1G5fK5pfVbX2NbYXWNt38r+7g9bmdI2/vjKllCD2hupTb7aNsyFL1NN3w/uJffThFJ2P5e1/lFBDWp/R81lVWVru1HomLm2XTmPk2kkq9s7VEbbDZXt3I51MQ8N1KD2180C4zI1qa4Nthpt71/bSwk62cJRM/qSHfpQp4Ma1P6OWueyrzqgq9vUHO3tMPT1HKi5PcqoMBw2Qg1qb6yrzStqIcead9a0oiyjVq8yw36AGtTeTG2K/R1j9OT+qpSSpyZZWh9kaQE6dHYPNai9mZprFhTSmVE5T9Uwl5M7E51rbMo5kZ9j53hN2nbYVVCD2t9TmytfKFauORBaCtK12yq12A9S9rGzI2yBGtTeTm02Ul1rXNZWdPLHKI1O7Voztou9u6X0vlWtpzaVNAugdp7Y252eE2tuITVQ+8QXp/JNBahB7cJR2m6GGtQ2uDi7QAxqULudgBoXh9RADWpQ4+K8OzW/fkDt1qmFUZF6jyrePgh3DuIr7eVT84+1j09Quw9q1hbPULOXaY3mqfn5VR6i9gC1m6dW6E3QnVKr9JMitWYe5d7VcPFcTazZ309Qu3lq87PUVOH+4qn5+Vusff0HardOrbU6We8UNdmh3SA1/+pz4//3A2o3X1fbz6epGXuZKaNHqXn6T7/Hf09Qu/VmgXm2rlZvlJof+uT4b/9C7ZbrapX+OqLm5xOMm6UmNA9+Pn/UVQfUCplUICfiJLWm3DA1T39oHlx1NzbUXqDWbJ+ahxebB1C7dmpDp5X/z0Btfnp8oXkAtVtoFjzTr/YBqfHNg6/SPHj6DrVbo6Z3Oj8JtXn+rs2DLz/n/+wPqN0ItU+amqdfmrH957xBDWqXTY1vHrj4DjWoXTg1vnlgvz5BDWoXTs0Pb+0X1KB24dT8DkXoA9SgdtHUPMRumP+97RzUfqkHc5l7t1C7xVxt/vHw8Pj468uX739BrbRQg9o7UvN6ahPUoLYJtcJWSs2Edb3meays7Y1kd/Jfhe+s1j3SwvlDE7qta/kcm36sD5WVNLM3GabXjtq4Imq3FZel1tlCqe0itTGO4/FK6oxaHBs61PE5NWtqB4cu1PRNOnt71IjXU2ut8cv4NrbwmU8tN3mLvh9UibEZtWXhfFk80yE9oLY+dKGmb1LavnzlIidQu0FqQ18PnlpnR6U2+lXMd7Yo1UeTUUsL5+tq5nt9kENGbX3oQs2/yaBDR6F2r9R2tlURAsFXqdpYbreipOqHA2q6mnkcDLqmlh8almmdszeZKED/Mh4fP/M889dR0xJTqelDP46otU7iu6mlN9n1UPvbxsfDtVOT6pan1shMsKwA9eVf74QcUNOF8/vlLY4L0HndAl3eRDhTgN4pNe2w8CK62CdR60bTFZI1lStqceH8RheaLipz1CxIhy7U0puU8hA4qN0ptd7fLqhTkehIxDGgQk0u+WFnhyycX8dqV73qlMkOzajFN+kk44TanVIz8zG1eZT6e7ebw7OMMmpp4Xztwu2b8oBadmhWgIY3aXRNdKjdJbUlyuCpTK5OhNlMANSgBjWovZPaqwJqUIMa1G6L2oZfHmpQgxrUoAY1qEENalCDGtTgBTWoQQ1qUPtM1IoqPINeQgcADb1dti8jGufZ9OEhR2W8D5/uWrVyk70a853qMFTSv1avJk3lHxSnVBW6BKcMpiyhdovUitWQaxXQZIN/TEZtl1bOP6bW+EWmy2ynMMKjDa/pMPI1tWY1parws2M6qN0otdp25TxOGbXC+iGNfvvCY1SQk0w4KP3zP6r1vfihs222U+3n94V3luG2B9TiB4UpVX6518JC7TapjbZfwxMilV22LzyMDi7TaVSjNSeoyfzRbCelNukU5qbO8sBELXxQnFJV2Kmv5spthNotUmvT2P9IzVhXS1u2Lzwa/wwj+VUs1LRwbX3a3dZspzqWzLuluE2FcfZBcZ5LYRtjjW2hdqvUmjU1KRtVQPMCtXZNzU8VUE1H1KwZtdVRHlJLH5RRc+2EeobarRag9UHNrR9mLdfqFwpQmSqaFaBVcNBYc1iAuoK4DRNjDgrQ9EFTaqA07jNaqN1qs6DXBRCWZoEgcgLS9sPZJ1LjH2p5SNuKWmf87/KgWVDYfm+7QWYeHFCLH5SmVBUhI4XaH+NLKAm+XhW1/UFnh6ezbM94xH6MwveyZQVoH4vG8bizo4l/HFCLH5SmVEHt1REXany8KmpzIasBNWOqqwUBcXvGI/bOFrYeV9Sq0eVK8Rn2B124RueJ2mp/SC19UJxSBbW3Zmtfn66L2rXUTaB2lK09zlCD2hbZ2ufN1KB2Y9na4ww1qG2RrX19ghrUNsnWHmeoQW2L+P0ENagRUCOukVpcRn4q86c95yuqTeN9UuO5BReiZvvhGWp+/PYdUiN/Oj81f1t0PxeBlUnUWh0c1EENaueiVjxLTRUOUIPamag1ug7uSWrmmUkCUIPa39XV+tAsOKI22fW0BahB7Z3NgjDL6VRdrYEa1M5VgJadNEGPqWl0A9Sgdi5q+qs4Sa3fnTfJUIOaHU/W1c6dZKjdN7Wxlso/1M54moemOW/b/YaaBXuovfM060o8ncnPK9SOqU3jDLX3nWazPGBJTl5jrvsfztVXIm6X2t79ex307spOeiPHK/+HA7XPe3E6vyCAkBvmvpMbes1Q2qxsiCvQycTFMOFxWZ+u0QJFF7DQJ8pJZ6a+qhMgT6xjB7V7pTakW8Wd3cep211ObVxmhXcrao1dURv8zNvpiNp6HbuzpubhMcYD1D47tSINgNlZU2i/d9uLsiZSSyvQeUMmUivsmlqja1/IU6rX1A7WsTtran7GxuHXn1D7/NSyp5OHGf5GfkVqywp0LgfsM2q6Pl1GzT/TfG/NAbWDdezOm5pfgdq/FKDXlqtNiV8TisNlWTBdejNR8+vTxeVfbZueFZxWSfHUDtexO2+u9tu/63/U1a6srjZ6dyouGGoyJLrca6AW1qf7I7WjdezOmJqfMU/7H82C62uBauetamr8Inb9sgKdgzMkamF9uqMCdD5ogR6tY3e21Pz4lSpqT1C7ln61MvarNbLatV9PX6m1rnaWVqBrl0fdL+vTrZoFMniwWtfVjtaxO1NqHsJqSI+/TywqCLVPSW11t6DsU5dEKBl3aVRWKgO14h/Xp1uolfXy6kLtaB27s6QmQXtyjdBH+tWuhNrqHqh0tNZhPWEb+lzDCnRrauURNd+F2zflitrROnZnSE0GzcW/M9Suhdorow3noN3yXNhnoX3752n7cwC1O6IWoX1/8airDqh9htS8Ctq1B9Q+PjV3AQ1qH5+aH/cBDWofn5rv9wENap8gNd/uAhrUPkFq/r0LaLdELcxr1JGMaW0TeSKJiZ0EXfun4/W2+sA/HKi9htrOZtRG35/zqq6dNFmtLqEGtT9TK21OrdIlnWYdAiSTa1frhdXr1U/8EY3eH4Ua1P5IrcqptWEgmZ+GsvfPg3uZmswz6Fb3T9tKb4FWOr1AXm50nqTsJ9nfqDdVm7FIq462dvWQaqjdJrXWZtT2vX8YYaB2OJP2NDXJCNOIR5ONkdRFY4e4mIovaoe0Zwu1+6ImbYImUZPcaFyo6UIof6TWyzg3HRUkioawypjpx17yxDaucOHXH9Mxup0D10Htzqi5/+9MTs0u1KSuVh82AbLFFZa6Wmt8YekO2FfJzSQbpzjSzRe1jdG8TiJkdbWB2l1Qkwu/UEtrVKdl08c/UAuTCJr0YlunZute1vLsBW+RitqqSaxSqbqH2n1Qa+eFWtmE/o1oaN2LcaIADW2BhZpZqEnR2vg2w3PUdNsEtbug1s05taH3qwqfXtX1dF1t9n1zcXZKt7jZxZZCkWp1u92qANV6Wg21u6BWrKhp1X16O7UydK7t6qL1f5o+9AfbMlKTrK+QPathLmKzoCNXuxNqzbympt1s+zdTW6Z3Fqkw9e2AuIRWnAuz7uzwDRGo3QG1vjykVmrv16uWRV89EcJ3zNZSuzO+C3cITY1ALa0/VGRduFKCF7RAb57aBucq3Nkq3r/+JNSg9lLUNq79ATWoXTKKeA8ValC7bDTxmUtQg9r1BNS4OKQGalCDGhcHalAjNVCDGtS4OKQGalCDGhcHalAjNVCDGtQ+78W5rbhDav8XYABxDeBwRjAC8QAAAABJRU5ErkJggg==iVBORw0KGgoAAAANSUhEUgAAASoAAAHECAMAAAC5qpfvAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAAYBQTFRFqaemmZaWWFdX8/Pz/v3+6+vr4+Pj3NvbSEdI1NPSzcvLxMPC+fn6vLq6NDM1ZGJibGpqtLKyjYqKdHJyhYKCfXp6iIWEeHVzj42MgH17t7W1g4B/cG1snpubrqyrx8XFc3BvZ2VklJGQz83Ne3h3X11camhmv729YmBfioiH/Pz7ioaJpKKhwsC/0tDPamdpsrCv1tXVysnIcW5wkY+PgX+AenZ3YV9huri3TExO8O/uIx8guLa3UU9QVFJS6ejosK6vZmRmTk1M8fHw4ODf+fr49/j46Ofo2NfXOzo82tnZ+vr6Qj9D9fb2RENEop+hXFtbwb6/3t7ebmxuY2Je5uXl9vf2dnR27u/vnpud5+jn0c/P3t3dQEFDb29tUVJUYGFiZWlkfnx+6enpcHBxd3d0ycfH7e3uZ2hpPj0+oJ+dhoOG2djZyMfGPz8//Pz88fHx/Pv8+/v75+fn39/g4eHhgH998+7uipGFlZOT0M/O0tHRHRkbKiks9/f3////gtOU3gAAPYBJREFUeNrsnYlb2lgb6JMQMOxhB9mRVVFBUaAjqWDHihaMUkfbuvSrY6m0iqPVe9Hbnn/9JqwBEgxoS9DyPNNpISfAj3Pe8+4H+uvPg+cD+gv8efB6/EH1B1XrcVn8NnFdFF2izxkVOiZLJGb2OF8XTdv1uzqr5ZNZa9TdeP8NvRYCKvS3c3oBn9zojCGPWT