Е. Л. Пчелкина

Задачи для изучающих ТРИЗ


Скачать книгу

алгоритм решения изобретательских задач. – М.: КТК «Галактика», 2017.

iVBORw0KGgoAAAANSUhEUgAAAnEAAAMYCAMAAACT30EsAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAAF1QTFRFzc3Nb21utra2qqmpREJCj46OwsLCnZyc9vb24uLigH9/7Ozs2NjYpqWmxMPEZWRlQD0+dHN0urq7sLCw1tbXVFJTj46P39/ggoGCzc3OmpqbW1paIx8g5+fo////xUwozQAAd51JREFUeNrsnYd66ziyhAlmiZq0EzYAl+//mJdI3dUgFGzJlmw3v12PjkQi/iJACNXVOD30+Myjcf/3Gcfn5PJ/WpfXbz0lTolT4pQ4JU57SYlT4pQ4JU6J00OJ07oocUqcEqe9pMQpcUqcEqe9pMQpcUqcEqfE6aHEaV2UOCVOidNeUuJegLi/fvnlj78rr5U4PR5F3L/9Ls3/Jsb+8P/4fff6Wb30C20j/eMHEQe7Z78lcX/6mv0S4fs9QPa/8rUSp8Q9kLh/3N+/u9/Cy+2u9s+v6W18/bRe+vWXXzx0298/fxZxv/wSa/4tifvd/Wej6y/fv85Rx+Lr5/bSK7T7pxP3MjX/AOL+679QEa//uT9+/c/vf//z7+L1dsav/9luef+GNqF3/r09Xbi///PfDyfuzz/c7//8VRTHzzX/8qUNE4Nw6l9xNIqXPajTnkrcVnH3W/j6/+s/YaoTBqStd8KcR9QT2ojexUYRKTyLuI22/27U/Wd7+Zv7LUwefvu3fO3c3+H13//mNqF3/kozjl8/mLh/Qi6/F8VJc9C/gbh/vhlxseLuH5jV0ru/yHpiG0niUqP88pT5YUHcb/5x9PdcwN/++uu3XBHx+l//+j0/X/yffOfPX0NN/vhY4n71bf4v5/4nM9/ad/uy/NczmFr/rwDk9yHuz1Db3/wo9Hv4Xod3t5b4/Zdf//VfUU/ZRkhcbhRI4WnE/RVub9tX4F+hJL+GYfa33eu/QiV/gzahd8KwWqnEY4nbhtF455WZb6RvH//i/kfE/eN++yM19K+//vr1ifsjdE2o7d9hFSu/+yednOsp2yi/i40CKTyNuD/zffYfKgkMSrvXaQCFd/76+8yN+rHE/c7jAWT+7w20rTx/uH+Fm+z21vbOn7+nsx43gDyROKjtf7em/uMPfPf/RD1lG8FLahRI4WnE/ScX7e/wxcGv1m3E+Tn8X//34cS5KnH+ifoPf4P7dyLu91+2irhvStz//ev3og12DVN9yY0CKTyNuN/D7ffX8LPD/8KtOt4u8DUNY3/sRtU/Yk3+/eHE/RYXcIrMt3L/6mfD//m/VNA/fttG12/15PBbmN786uu3zYB+/5Xe/bP4QpZtxMhyo0AKzyLu14TRH34e5MuTJqnidZiq/7l7cojv/J4WKz6YuF/8CsGvv/7yX5G5J26ba26FzPc4/6TmvumTwz+5N0Jz+CeHX0U9ZRsxcdwokMKziPtfwuiXMA//k6Z04nW+Q/+GbZLf+V98Iv9o4vLw/6vI3E/i/HT439tX5ndaK/muqyO/h1+56Z7vyqdS2UYwLFOjYApPIu7vtJD23zhU+WXFP9Ltml9vn21fsr9/wRVgfud/v29fwj/CY9LHrgBvjfz3f34VmQfifvnjnzTvdLEW33AF2HfEL/T9D/cI3xy/lCvA0EZIXGoUmcKz1uPe0AKX3vnEXnrCjz+6W0mJU+KUOCVODyVOifuaxGkvKXFKnBKnxClxeihxWhclTolT4rSXlDglTolT4pQ4PZQ4JU6JU+L0UOK0LkqcEqfEaS8pcUqcEqfEKXF6KHFKnBKnxOmhxGldnkycHnp85tG49TOOz8ll1bq8fuspcUqcEqfEKXHaS0qcEqfEKXFKnB5KnNbl/uPUDsMHEmfclD7Kh/2AXqJcvjBxsWHaL1yTm46Dca7v7gHWLas7nSXu4PpEmDNNOD6COM7lqxN36M38vW9wzrbLfUmYrjXn73Gt6xKPmbSPII5z+erEmf7wvW9x9v5v1Ny283nijDmlYeIjieNcvjhxnWu/N3Cte/A3qiTu4IY1DXgfSBzksvVZONa1cc7fvefeNds3y8XqOiqA/4vvru3ROjuuNNm0du6MM37GMU/bi5bnojalMfj/mPCO/zQmF/82PrVIT3Ps7bDcRNzJxSm16w7+Iv9Nbm3fHw8+2VSxkH7r/K1iS7nfiuyP8dib6cLdI1RlXiGdFSuxNkOs65adi0nGT31uopkuZ4Spcx0g++PRv4slEU0kOo1LgFUN747OnSGudeNWpdMHEwe5bMRtc0XjfKH6NvSY61Kxl95WiEvvTm4Ym65Z/Uxzm3Gettu/MeMYHkkOpm0Gf/ehD1O1rY3z03GgTIiIcbvEhJdDs/XjcgtxxsYOckfbNV2ganvRmu3qk6/Vln9IP872fCZbzlN83mja3pzN4+hCeqF4TWogrMSWVNu0bchuq/O4Jy4105WMMHWuA2RvjrZtJi6JcaKJRKcBcVDV8K6154iLXT99MHGQy0ZcKmXnjkdfWYbB2GOFuPguPiLmmk7xFtDEd8Wt2v+d+8G/V94yAxGhSbcidNvLLt2FrxJnpjwZdaHPW9fl2Xa34j109gjmNH0BYybj2SG5DZ+0xdeCK3FwOLuaQ1UL4mIzXcsIU+c6QPaub0KZ23SWpURDdUSncQmgquHdNvZkhbiD265fuE8+hjjMBYlrtzv04qidRzdW7nHpXeuWHXGH2NsBvDl+G/HqqT+4RNwy+ebl5s7PMdvNoIvJWHuduO3o44CV6pLuJacGx5ft7xQeL1ImvoApk7NYm57SK4iLlejcyCcvcAck4lIzXcuoSD3lCdnHd8PswXJPUROJTuMSQFX9u3PfnbvH+Xuwv3OePpQ4zGUdeq7H9k1q+9UX098YtgqnL19eFoR3sVTYv/Ffo8kzDiau2RolEBeOUUxi8rXW0ZvullF1I3eANgpf7yOtYebujLcMLKC9stQJ6UkmUiWo/9Zl6PM8DGuTm+laRnvioHHhJQ0JmGjZaW7Xnukb3vXzOeJMumb6UOIwl+3un+th16NZzRC+O9sbw/ZNik1h8rIgvHuRuA3pJf+biLPp/pbmcS1OYgRxcRmyuW11JA7i3EXbjG2UJfL9E1ZQBXExj9NbiUuVoP7z2c3YTKk2uZmuZXSVOFsljppIdJooARDnoTxDXJrOhMHn44gTuRwCd6lu2xPFduOLxJ1oEoOjKr1r+nlH3JLv5NZwB+er2zyniG/4gYObe4qjlB/pp6sLhXIFOFQm1sgPQ0MYcYpRdQmAp5THrQrTlTWHc6NqrsSUJ6sxO1uOqtRM1zLC1E1tVB1Cq4bh0VpqLWoi0WlcAqjq9m5n13PEpdv/Gga8DyNO5DKl8S0UfnH+jheI64923RPH73au2xHXxT44hcbbHtgFcXZYzxPX5CeHdns5vIW4rRYHP540aaoduC/ncb7kS87EX3Atky5N3duCuFyJlFT6msWqAnHcTNcyEk8OuQ6YfRNa1d/JY1JFoqLTuARQ1e3dvj1LXJ6OwzzwA4jDXMa+j3fiJpT5GL6bHoawwLMnjt6dTVodgbbuh7Q6cnTtaOSTQx/uiXlUbc1+daRNT/OTX3gYp9PNv6uGJ7q+i2sIfuGgs7YkLpw1ubB80+ZM2vM0bOXb0jsWTHAlprQ6EtcpyicHaLwrGcnUUx0w+y0B/3La5mpFoqGJRKfB9wyqGn/QrBO3xDz8C/NxxIlcWHCx+rfDCnccGIa1Qhy8O2+PP70VxB0GG1dD52GrcCeIi/fV/OTQH/crwH1eAR63l+Z4K3Fzb+ftZbNlHdZJu+0Oc9gRt/XI9uHoV4fjeOhXbs1wdmU2LGa3u7sQVSKu/LYxu6YrR1VupisZiTso1QGyD4vBMaORL6AmEp2Gd3auqmNSq79yffAvQ7v3u5XXSO78AfCzdhG5szP9L318Uh2UOCVOiVPilLiPI+6BhxKnxH0ucZ/XNaseSpwSp8QpcXoocVoXJU6JU+K0l5Q4JU6JU+KUOD2UOCVOiVPi9HgJ4mDvPYokSeIoVaZR6uh3qpfniavnzgSd6E6rNaR9bDYpMB9Xl6SYZXkoCSfCVsSwHYuks/sN3gPvDx2Kn5j4ela7ZiHsekpSVdgBFHbMbUeoYdjHdaS9waMl5av4A7rcnUIXBHAT71uK5ScVCGla19qV3Mmg0n0acSRcQJEkSxylytTSLv4u6UlZCgkSS9O3YxDpFcQ1Qd+5Tv125gWB6DvqkhWzLA8ljWpLm2hJOrsjLqln+SUcfD2rXbMQdm0HL63tCuKC+CBsqPRZRjWpdWmLqDN74lh0ulfochty+eNBVQRNa5U46kTor+cRx+pEFkmixBFPaUG0upNCosSy8TeFYUecDSLVNm2pbh9XF1LMorY2UTAHto9Z4Qi7YAvhKb6Eg68ntWvsb9pr7+yOuBVve01CMuowOqE3LUSnFYWu1I+usnT5nk6a1jN9m4Ug2K8vQByJJFHiCKdkqWPQBPbTTgqZro5iGthtnzthO91ZliQNj6sLKWZRW5u73CtelpRbks5Whaf4Eg+6ntSu8QaTzpuT3jZJznJlZ/oWnLL2rQ1fykVosQrRaUWhK4gj6a8gDtQ3F4mT/foyxFknBGfwN0sdw6TAHHZSyNwErJXskbilR5HqQ2PhUVqorc3F8w0cO5uks1XhKb7Eg64ntSsIYbeZbU96277LlQ0fH8K0jPS924hITSSJY9FpRaELrQXSX0EctD0efUmcLZrr1YkjqWPUw/SHs8SZLKEctlnJOGR5az+TnOaSbvNO4khby8pXuwZBFUtnq8JTfCmOfD2pXUEIu5DeNkQXaHket83GDmFaBhSeJS6LTisKXZ5po/T3FuK49V+VOBJJosSRTyGpY2xqd5RSSJBYUpfNQ789Q8UGDwE3QkCl/uF1IcUsamupgbeJY1Tiyjl7KTzFl8WzQ5OVvFHtikLYFdSPS3qmj8n7ABsWb/JRb5pV5/CHRacVhS7MTMwOq4ujKrd+SkX26ys8OWSRJEoc+RSSOhJxQgqJEstx12a2D+316DhvqS6kmEVtLXXO4mJNWDpbFZ7iy8mCmjlfT2pXFMKuSWLp1hgSRBIXGojncR08R8AfFp1WNK3cQyj9FcSBplUUvOxh2a8vQByLJEHiyCpTlklHlWlTSCHp6u2Bbtpu5ydJHIdoCPLWdnhgXUgxi/JQvh3E0GAgnc0xJxqpnkUhrRyezLqC2pWFsGGZJAZn2dqk32jEUbXZrtwaxea72hTDec0UjSv+WUB0ulfocg+h9FcQB5rW3RKJmBqJfn2FeRyLJEHNSSpTlkmHFeBGnldKLO1REodhaFpLS8gPqktWzAp5KBGXJvwsnYUJulDP5pcneRsW4XG82jULYedQkyCz7rcXPrgTzdmMX8fdBjY7LDSO7mIfhqNDXe5OoQsrwCD9lcSRpvW0Hz/Esy726wtoue56eHyOoOW2FjsXDuysaq3t51uuf1AduselVRT8FX/l+gnETcW88jpxprvp+tcjzrwpLSXuQ4hrzvtV3KTMbT7a7+KRxL0xZyXuI4g79fc9Gt97/QsfulvpZ9dFiVPilDjtJSVOiVPilDglTg8l7ul1eagvqRKnxF057vYlVeKUuLfU5QG+pEqcEveGuthv7vSrxL0YcQ/3JVXifjpxLNwsNLdR+Um+pCw9Za9TlhEkyavf0eM3G5U5gTiD1aF2J4qtanSlwevumMhmVtyZ2aSWJb5LZ8NGL8yQFcdWNsfe21ZavCpx760LCzeF5jYrP8mXlKWn7HVKWs4seR39nshCMrUKYS+oQ7PPKaRc0+gKg9fKqO+yzaycC5BJLUt8vWa1k1UJJUPiKLe9t620eFXi7qhLdv4CzS0pP8mXlKWnwuvUJdlNTmlZK7GzQbUL6tC8cRxEsVWN7m6TaEEc54DvkkltIfGtZCjs20Q+6G1bWLwqcQ8gDjS3pPxkX1KSngqv06RzSk+zYOhWJw51LCRVYFFsVaPLxG23m7lG3LLbhQcmtVLiG74cRYZJG5VVYFR86W1bWLwqcQ8jTnqzsi8pSE9hWibvD4feVkdVFriAVo/+sCi2qtFFu03nyg33lmxm93c+DBziUzq5aE7OGQJxrnDzLL1tC4tXJe6xxKHxKEFA0lPQzBYj0sHWXISvEEcp1zW6OKouXXZDK+Zx7XniWOKbBbKcoRxVT+xqvve2LSxelbgHEFdqbiMD5EvaulMfTQ0PBUxsEmtce/uoSgK3nHJdoyvnceUNVKhO4V0yqS0+Cv/MKto4N2PsFoh8UnrbFhavStwjnhxYc0u/o7IvKUlPm10sGZK8Nq67PI8TjqfZ55RShtNBoyuIm629jTgyqS0kvl4gSxnGz5i4UwqRsq57b9tCDqvEPYA4obnNys/sS7qS9FR4nYbOIMnrcO1ZldWh6HNKKSNxYKPOTw6t3Y+f1dURNqlliS8JZHOGkyORbRh8p76niDB7b1tp8arEPWIeB5pbVn4mX1JcYQCv02TOGiWvJ1S81okjdajwOZXhyXYa3XhSlLUu6/7JIdrMFs+q2aSWJL4skM0ZWnPAB4PtsYciIla8baXFqxJ3f12u6ns+Tnr68JSv2endn6ES9/HEfZz09PEpXyHuARkqcR9N3MdJTz8i5YvEPSRDJe6jifs46elHpHyRuIdkqMT97Lo8ofWUOCVOiVPilDjtJSVOiVPilDgl7lOOUzsZJU6J+6wjyGCPSpwS91nA9V9cBqvEfbG6fHkZrBL3tery9WWwStz761LVqZYmpqTVhP1DYBtb6lRZE1AoR/v+6H9EjzLY6IXK8gHylm1c2Gg3h01y9IuV/OlKOqayzlS6snpL10OfN3cu3hCCcsFU48lbLSz+xp/FtRU3NCXuDuJqOtWdiWnWapbE2WhZWOhUWaEqlKNexhBemphn3BBJmlHylh2jAqa1wn5VEicdU4XOlKsQLV2DWjFuej9ALjvitjJtxWPkSFxLmlUl7iHE1XSqNRPTUnnAtrE7nSrKAEE5Gu503u4mERX9jPOmb/aW7dzRP8YehwvEhQMdU+Hj7KaULV29cGPLIem7cy474sKtk5MU1qvlPgcl7g7iajrVqokpGw1n4pJt7E6nisSxcjSKEfzLnKeQUrG3bOfajeHFtZGcpFPdEScdU/ljcmXNlq6zMVsOS0+edrAls/AhgySFSZwS93DipE61bmJq0QAWbGN3OtUygEjU8dnyJQ/OMumN8O3+0vZrtO1KOtWCuNIxNX0Mrqy8mX2DzW3DO0wx3W4GuJ019PiJMMJkUasS90jiWKdaNTE95RmaiaiQbWypU71GnK0SZ0AlezSrGeh2O28zzIK4nWNqlkygK2sKtXgwkarjjLnky3KFvPUrcr0nDi5U4u4grqZTLU1MD7IbEipkG1vqVJE4Vo7Gl96iNNmlhvgzpBllb1nr51zjVhoa4L1OtbBHLR1T0/AoZP3x0WJ7RA3zuFE62Jajajk30FH1w54cKjrVcyamkrhsG7vTqSJxoBxNTw6HdEFylM2aUfaW3bBZnLEwpfQ61VicI3xRhGMq60zJlTVaukaUcqCd0sGWiQtfDkgSxLVK3EOJq+lU0cR0Ra0mEke2scOlZ1VWjh7dMLbRotTbpXZ+6QI0o+wta4MjapcNf4NOdUxsT7R0UTimZukrurIGqOfw+23IYbtflQ62TFxcG4Ik2XpViXvsPK6iU0UT07R2G7WaSFzWOO91quJZVShHs0VpDiOImlHylg0SapfUyqRTjVTk8X3nmJp1psKV1Vu6diy29os0hYMtPKt669cGkiRxrRL3EU8OH3TYxzbZ8VU2OClxP4O4xTVKnBL3mfe412k9JU6JU+K+CHF6KHFKnBKnxOmhxGldlDglTonTXvoudXk1dasS973r8lHqVjuuizspcUpcCdxHqVsnM7fvu3Uqcd+6Lh+nbh27d8ZnVeK+c11eUd2qxN1Rl2SOyrajO99UesPv3o7SVhCrssoVU48+L1MSqQoBKVwcdz2CywcLXdMmcifVrY0vURlVVehb6Ve7uFF8SGpZi1uv0k4pzmLXOLn4Ff2rEndnXbI5KtuO7nxT6Q3/N9qjslgVVK5Fl0V1YDDukAJSuNg7LJ3ADobUq9HNpvf/AXXr1uNjM5SewULfKohrw1bSYN7A20uz4SpkUSMuFL+mf1Xi7qoLmaOC7Wjpm7oKF5BCrAoqV9llB7K/3ZgSAlK+ONDGvl6oJQw8hpNY3XqIrHWFR43QtyJxB0czQNpCz4arkEWFOCh+qX9V4u6pC5mjgu1o6ZsqiBv7pGtOYlVQuYoumw31dikg5Yv95QMqDwRxoxstW2721luuxpemIA70reSU6tWNnDQL08hwFbLYE3eh+ErcXXXhzUpsO7pzsSTi/BH2ibNY1ZYK0DQ65u457AWkfPEafLMoaUmcv+sCcZblXAUkQt9KTqnO4nlEHBuuQha7xqHiV/WvStxDiGPb0fPEbfePNkTvYLEqqFwxdd9N4xpVoKWAFJSufrofblgpCSTO33ThrnSeOKFvDSFtpi39c8SR4SpksWucXPyq/lWJu6cuMInKtqPrzjdVzOMWL3xhsepUXbTfztzm6aesApUCUlC6rkPfwqyM1avW5ckfqFuTvdFS7CIV+lZySt3+N/EudbJzZWdMyOJs8Wv6VyXurrrALBx8TqVvapU4FqsOdeLiPD9MBgsBKV8cwueAuyqrV21/zIywurXJTw5tSRzrW8kp1VNDT7Vs58oXQxasgy2KX9O/KnF31YXMUVf0OZW+qcWoGla9SKyKbqzFKBwjKg1NJwWkcHF4QD5RtqBetWDASurWsNoxDqWvltC3JqfUJaQypdURtHNlw1V+symSpOJX9K9K3J11Seao64o+p8I3VT452CHIP8GQF9xYZZeFu4RXgR6EgBQuDu7UfNsB9apFEWxesw2rzfsVYKFvJafUuMJjw/nSzjUarmIW5c8aVPyK/lWJe1xdrF1/6PFmHawS94i6fJyD6qsfb9fBKnH31+XjHFS/46HE3V+Xj3NQVeKUuO9WFyVOiVPitJeUOCVOiVPilDg9lLgvVJevbZmqxH21unx1y1Ql7ovV5ctbpipxX6wuX94yVYn7WnX5+papStzn1MVHvA/bf0Clmm1Q1yxgaI59D86jHduN1ixT4yeD34YLkgJmM4pg1y4oJCYl7ocRN7R+j+W0CpVqskFNmoCgEsV9kJ3LlqhVy9QkgLaW0wTisgg2/LdxVon7iaNq2vedVKpkg5ruVkmLOtCWno4Uq1XL1GgPM/S8UR2IIxGsq/pdKXE/g7gGbGvBBjXxkFSiJ7rJEXF1y9Sw3bs/OEFcMkllEay1StzPJO4UDMaP1P1gSlncoIiOoRefl5apQdLSrZK4ZJLKiYQADTqq/kDiLD8G3EqcsXvirCCORFWQxNJFERjdWC1lrMT9tFE1BX+IKlW2QU14JEXqmHVMB/K3r1umOtvyJBChNQ5EsHPQ7ChxP5O4pCRGlarJpqRrVn2SrDTqIaIlas0ydXtKZWNMIM6bpLIIFiwBlbifRNyUV0eo+8EGNfEw+dURkyV+Y9+HqZ9Z6pap3rF13hEXTFJbEMFafVb9kcTNk3cbbcREjW1QMw+jX+fNayNkvNqtVcvU7QSwXU4DczZJJRHsGW9mJe5njKpvu7CT//2RhxKnxClxSpwSp8R917oocUqcEqe9pMQpcUqcEqfE6aHEaV2UOCVOj404PfT4zEPvcXqP01FViV