Кика

Гипотеза Всеобщего взаимодействия. К вопросу создания единой теории поля


Скачать книгу

ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wgARCAhhBdwDASIAAhEBAxEB/8QAHgAAAQQDAQEBAAAAAAAAAAAAAAUGBwgDBAkCAQr/xAAbAQACAwEBAQAAAAAAAAAAAAAAAwECBAUGB//aAAwDAQACEAMQAAAB6UoLfkb5t6xkqVfFvbQpHN7mlcXadgICw8iZn/X2w2z0NUbYcr+n6uVZJ0JLF0sV3s54xfeBly1aolyTAVlcbMsF1+t1FEvbLcflf8lbNTFWxz1rNUOzJUzXeymxEebKyU1GrdlbSpfd9Asmt0E77353VjKX4TkPM5h1if6vr1nqMJ6Tp3tNJc9K+GUstFy3kx3tHb89kt2vach3mQ2/ETCxyhzkZjpuVHFZXz11Rdal+TBmY+WQ+GBw9MmXFpEsznsRGDXbLR4tdhPd0WbZ7HwpTLKxE77vEMbttYVfSncV3TQOnWgTD6ANDfmqyoTtFbRhxdMCz0MscS/HGlYkTXidsEWC1Pj5xXbmjJuq7PEqm6limhmNGcGk5EKO5uTRGhqxNYCM1Mwbbi37ZUJqviNHxc0hJX5THzZikjuXFwMdcpJxaZGQlSsqrSGjKcYOujwo7o+68Wt6G0QZfDOjrMqc78jJOrEtaj9lgkSksoNRJVzaK9EOVeDILuxAMxAlfZzZvoU15U1tJ3obiUttJ9JrhN+sWs5unHJnayXujV6xVseMzl2q9VmNeOeDunJP2RE3h3WaWU1R7Ax+yiVpuleoyJJIye6nUSL6vNzjz0ZiOlzWC08jcyps0Puzpx9rc6ZPdMDPWVu/x7KW00h6az1spDlP62IpQpygdN27GXivvWvNjfc2vLk6RIGcKLRqlTG3Ntardh+TEjacnXFZiJ5+QcqpbPSaWlqEaho/VrvQ692h3KWErWzNG9EHSw4O3n6QSTbiN/NbUmSnNT7LgvRRuz7BVOhWFfbTuTvRjNr7q2u0mXd1kY4cuSwV/qa7FMFde+ejKfvnZBB519M+XbbT9aGD5jSUsjiwy9zlKctwf61a16RIbneSr8UX0RFui+UdXPmh9VHsNS1bMMhIsx8PfECZki/dWp9jmLPHctDW7J7CRqxICxHD0udVYLUcuQGN62ddFxystUQ5I3Y6bcTZFSirZ4fTn9d+7eOzdb8ooLs2RyMJrReQWqy5JYt1s5Ic1ZR3ZEn1xYdpMpVzUXJhq6tbaWPaGH25CejvPR0Zq4zNEilrhIY77aeo00ZwsnZlcbB2tTXli7Rc7a22YVsa2rqGWFcCWc5m5iw71TTwab5dmj1ZeTTz6mP629/RRvtjK+tmSC8Gqv31SGopOpidtuSF5MslbfCThwOlWOGd6W1zajPRGQy5vHndiXl2UtTNF4RLO9IeGu397PWBGVKKT0JunZDlrbDh1k9DguFb2n2FHW1eiqJYxkhg75Tmk5Ho+qD9crbKuBBE+1dl6t57IbMksUfReXfoIo1WdnHZceNIuavNtNO80V+rnM6GOyec94LG8qLhWqbamM7zupMDODsLwxhYNzOZWNiT3LEOr/Ypq0L6eHo3uJku4BirG2wa0kZ0xC7iHZU6fYJ02bOqkujQ6Pd3Xga+mcJDatm+FsqFC/QauvTVUK7VWOwm7BtaC+l+ZtpUVkpu9nO6I7UKf3a8Kyq2D1GLM1HNi0rbWVTTWR+oGZFbP5HmRHEFl8WLZQunXX+Pnt5B2lUZPOFlXnC2uVmkqwlVrz9Xp+K8ty02qtBLZRc2bttotU3s8qmOHFHMpufCw6+olVyS/O6c9Qm5cLz0dVVXHN+qq6S1nU70Dr2tDWwEGxvtu1et8KKfD3G0rdA7Sw37BD7wem9rq89hV3b4Wkp+c9W6vx27uPWzlvJtsq3W06W01rVj6U/ErauF24MGyD5zZsW7K2+RY7kzmXZC1sMGr3arRu+Crg051jbmsbuJI13NVUloyfrTvt6Y23TN9e0Ouvo4HeqsSDXKySJC2zo06OwjtPRDp14oSdC3w74Bx0tKKW0lOwIL1yUs3payuFZ4QH8pZLwa65K9pmHccxKl2VX+2g+1muqLaFq2tWrfm5n3iP4jmZuaqxfLjfNVbD4q2oQmVX9BGzatm/VUnstk4JUbyPFNdv5VdkYHxHS8iZTTnRG6qN9i/U/qZ2Fc+odi2pV4wUESVZtTUQKaFKJFXxGvPsa2nM7i8oMKVsl3sOYWWU1rUaKpca4ydyVKqZkW8upTk+srhw3sI1akuxN+lUpcwdjhaLZRvAMkPrP6BDErYnyJJkUrPIu44veq0l7R1tlib5spVqy1T8sVF6s8WerPrESWoJmDzfSeyDtVS6nMshCj7jrWpoOhF3NF4+rzObQ02vBYpgWK8Q6rVMOrfJT0KWFaGi0sejxXbXYOenFb0H2YaffAvss6RGnzG8xqW94ed/s00YavR6fN8cUVS0kUd/D+jKwMNvnz3IceTFt1rjpldWi+VmSILBN9GN2SHAzu7G2WFuH5gzzTK1M0bE1YfiQscK56zTYSuj2SJM0WwbmraSsLWZ2Ws62PrhB7mzbOtUpTbaVVLUUcNUmEtJ8w5gs+dOfa9Um2qrZYvksbsLt6JHaoBnOvs7euwOJ6obTWl5vtmqUr3EZuvlyFpaj7Ww9V+ZIrUE2k9LZDX0LkvUaD/wBOLQRHZhstvILqifQqLPDzZGiy+2l5XrqimQdJ259EzqEKuTg7VHSVXfnbXqGrwtPYuLtRoovTyzH9bDrVMaxda9areiLq6DZcOmlbktEp5L13c9kH3hvWZ0WM+cy8J5Z48ZVQYmWM2aRVf3ZNKXogBWlXbo6HlKR6g9FXqbW0puquJzYnHCyDdWatxL6+bs5Z7TXrZnnLQgH3OGqya9oVn1G9aYsu87Y3Ip417aaPSy0cQegTP6cc5HjelG6CYDcEqx/EbbdYaB08sqN1K9bELEqRi7qp10xkOGjEGIJXivQx9TUwfOe/yN5K9Pow2xKivaIVkRvalpfPxr+0tVkVpKGlXt8MndXK41ku0SdDXhm7GTnFDXJciFptE0mNhAJnsqO8Mzrbt9Pmrzr28uOhb5GuNGxYRh3GHZatrYveG3va6l3Zy27fPNaSEXvew8kiJKbvlMj3uLVpjjppKHHVmTGP00TH0nrdPfm3VI5+9tYf21pbWi1NWfS5fcxRE7m1uNKNInxx7XH06ftDKy5DbrpN2d9zvNdUPh6Jbqt4gT0+LtmvWIo9o83fj1CMvVXr0vtFSvO9OtfFr0wYnPJ6hX7q6p9rZZbHFdj5WvGNscsckLwRezGpkzWyVBkiYKP8/obUJ5hCpfldq2e660+qU5xZF7L1wXU1UrD+guVM9oBQ2C6U68isnp6tCrzGtdWLuqklZQPnRRIOVlrqVqTh1Edi1zejxMiZo8sXzh6Ms+YOb9yc8jYkUq5veTGlXjxGmhrRuJKHl6/K38GDCtigjJyPFpR+s1tZtE4oCi6cO6r+S0anifED7dUhcbbFjpmXPwdEFepmdeVlI3wv7XoMcwpjt1vNaNXe8bdaZPODyqFv4gr01wtl81m2LsXqM1s54lTDCzJ1WsNhqu7rNlSP23XzqUn6U+eFpIbZRHqU3sFrwa9TXjnvOy9VN2hY71ALuouZ2eh2I3ZYPcOpm4HSTsGXVtPzYyfM07dd55gHtJmJp4md08+DXs8lc/VXX5YbX2RWKIrTsXrpp+zOgSP28VH3JZKLty4pR1xI6eZVQ9SPnEnNpkO2xJ7S+qlBjuKQ4rtbx7xY7105Tj+xGa7JSJKXlKYmdFZ4+RVOLprS7dkzLuYSIK+fEvU1lac7JbVINsaySbz72bb7O1fOaZgSoPmbMyQ4OT3A+shq0Peceyc6evDx1c9OL/xFV3vYeicWMx+ZWo7jQ3TVtcZBwvB1NjolzStZza2o50WUo6pmaNH9JfpclI3utI+qZDs5ZyKfP1rPWCU8W57aXXpAGpb9jpDsc5bn6Rx4qeD2dENTPHvp/I1BlFwK7dCxrzDrJrUB0N5xcjNMjur9IO60QWi5aXU26rANle2Up5gwbfuzLunjd3zDXmaFEbEx3zmV1gG3mTVptbWiQ3e1Tsj+bKHFLJOKP6AVf1rorIMYpvIUT2lx+f20Rsm0qedx0ByANr1WN0Laf8EPLeaflVV9ARlOLbTqayLNpG+Nb2jQ60j7oMqkvJv6sEm6A+s42W25Gi9SZsNRI6fOfWnO73xaK+yfJ+tyOiznxYNC8zqhFwrLJ8v17MtuLVLm3eCZtLkK8qWiryn77bcT9DNIkXxPHPpUdDfNbnDZTviHnEsda/TCLrKwu7FU+UXfJvQs8eX3WjGqnDC8/SFcbFZuXfZ5zojjhdexMRaKQVTvpBGFn0avJz+n67XdULopO2Wed9zHs5uDo5ZRX18b268F2B3tHz9+R0uXcj/0cSRHjrbXHvWaaIhSfRZ74K+jWDzD71R3yYnjq1mqb80bZK3c2a8Tl47Wqam/kyMa+Jax2el6a57bFfWzZjV6ZAqPYxqb00mh28ul3cnP2TbOxx18sbNzzFfUS/5Gh9zNo6JHTdlS3JDspsmTDn2NMEqYoBfCNLsn6pDYzsuRGUiszLee2NXqfVvrZoWkTVWqig3YxMpQSxqPGu/PO0btyLlPtbvwtYbFDdRWioRZvNti6naTIi3Yy9fD6FLEu96PyHQL6kyc1ZOThZZj9mzQadxWFWtVo4XYX9NibTsXGnrV2Ip877d+Q6fHeV7gtjbWsl/6tTtyN0dJqRLz8mN2yM2OZZYxuCJc2OPuzNZJR9v56s8410viu8aRgy1mrJPi6S2hz5wSlHvrHyohkm0Oz290KThArtquUxp4VUdjPRYGznnRxOGIdMnulS0OpsmXaQNlVv3QG8GaVCPnfSSl2bOSLKvB6OCtExMut4/5me3J7ZbnGxIe9eBLybQlGz+vbBT+aSDKVJQSFBsubSbKji2b60zk9d3spRik2tNzAj6565pVaCz6Rllky64nVx3R5NzrSPPu0WbpM/yvWe21rurLlStZhQjpJBlSm1dfVL6XxzSvojsyQXXC3ep3EsW3qLZFWPj65+2mPXbmRJk8SvXPXmQ5LQMd1n62IVlVksde8823kieFKa1xeyMha4WGrYOLqxoaa7G7oYTNmVnbYqI/5Zcaegk+3gv0xrmm133mtvTsmV5wsXWO8JzpeqzumdBxacKjGy+VfyL7VZrHLFnFNmag1l6cRxsKuUK/Qvghv5ouol6oM0RW+NZrpRa1/wCbuNXRLzuvNNnOp/zF3M8NzX5vZq7GZHyuw6G9s2sx4vsVi6KqwOPbwd7LXGFOgiHvpSFRtfVvt5EqQYUmPbSSN6HZFzVTmbJKEy6fq7Lqtb3JkJydzdkUOKS4Dbawa6hOXOtpKOnkyRD9XLPs3tKjaO7WVI019ObTV9C2Tt/N5hqWHZ96eTptq4tBf+ft9M5diXXNS7O1d6IbXfGjJzB83DEiaZK/+gVFEX/Y09ZQjVWbPWzWo6fcrL3+T0zD6hBx+edAzjdiz0HtDDIGJEqzth+bMimlHO3XrrYeiUjSW+vRebb26q6dKxx4kaulbyCnuWDMe7ei2q0l3iS37Uu/K0RzEa5YgTCqqnUYfF+2u3nQQ0rNKjjY6AJRYjRu+xy/CMISvoBWySIaXRm71drZ87pSGk/a38SyzROfqJ+sTgX3Jg9LlTc3hhKZKmigbdrbyo2cbFuP3q55QotXbcsXZ6A4mDn2rqHLtl0TQG9c9q3Lq2XTZHN5trMhmz0GZdWVra74cP8AYSpVHm3sLp89H12YsXVi3cXdPNRHorLtptKKCtzqgnoXXCx61idn948W4tWT5jx1v6NaAJFB7ws2HsVNiznnNMKzEqlat/YgL1Js61jC5hj6NpBtVgzVqQ7Mp+04n02I+Q3RFTJ0dh8uVLYafSg4yvhlI1iFzAcnx2+Af1cMdmcbK4y444MW6Ytqts8KnYj+RvlLQJvyKtsrXCcaYzc+9kMsQzLiX80NNZg8buTLajdr/Z7zpjkjTj9F7UZr48WinSvmDTX+w9SKs9hXdhSrDpeN2WkjOFpIpfXi54OPrKm7TWc3lt0BJs+Z9maBoDtMy+2nnK7egsJdysIuCBsPfz2uZcCSaUf22wk2j7R1LeulDHvKkCPZWewSXLLCw3a/iNJrtdiaNkq/8jXFcXvxI66Ixva5rP46MV/q+bgW+4YuiPRWdGrANcN89TXFzov7zz5uxpWwu7K26UIerVpNSyFitLINv82svnFVNmp0Q2+kdWE3n9SY1nJfj7jue2m7IGx6JQZ6C4tDayvwf/Y4zr6FU/uD3+B586aNSHRH1dM9Xc8HdbyQV9nndbfSmbDy1VlWCdOpaZXqe6GaZjSm0+9T376hR5kspnrcTdx5F8vb1NnQm2b74qLRiawd6wXP3xmx4+lBLWmtunkLplCeyroeuzpK8mul+DQaT69xoiFKeLEbo2nEkObXgW2zsaCqu9jWosRzNVPbavScPNvhqT5R2fON+ZNXW57dr2Rw6r4KbPbfVVpSzH36W1w4Iclck0QJrr5Yt3ItdPHKOdedl6Kt+jCVR05Ya5Wn6Wr5nU9pjIodbWsEWRVjVRkVgyal/Pe8Brs+L90uVTqVqpl6Ift/Zqyoox5Hlol2B3tNbL6LBTUVkI70drCZO20ZcaipbWfEp2s3VpDeFJ0m3Lfm1HHW13uYHfXF/wAo0Euq6laVbYyeUI40OmqIJt+5yCpcXYMaSa046bFGSXMXrIqjdi6evkxAE7qNe2zZTTro+ZXL+gs6Ka6eTY80ujpqvvLvB7Rs4kc/Zz9gjqSyTTwylPqTTv0S5mbKzzSTXtao8S7ycd1yNVEcXl9KJv6uKz2/FM8KnQzV5h67EC9W3OjD0Jjn1WWu9h6pr/Rz28pVLDuhkWuVpRxsV0Js7xvkzlT1uefJGxvLZeFKqYk4Jnik83yTtiTN7K1eJL0g1nUK7dpUqWhevXZ0WYLHriL1Osm8qvILAMuD8rK/HzV69DjpRuMJj+Gc16wz5NPUVSVIvxUDXNq33Ti1/HciLzUbMpnuoUvVru216i3GnjiN50rLIfRz9i2ru1M7fnq+1660PG25FxSJAuW8QxXZ2MsuWUZDwuaUrCqyIc2Wknjn1pnx2jkfs2bmFbqTSTa2M5z2DZ1ZpzoubtRoV/yW1YtUbA4tuetFuWDzGVokvPzD7D2vFu6uexRld7JTWZpDTWrvTRTTfeuyzV3X40kvQtmcLl5JrpZDdsf5q0LTY6lDzz05QzaWATHHX9y9OsttTnbaXZWAafdAqadvSr9FY0ttOBdlHwnq50HZFtqqfR+vHZOL67+X0jXShfWym1ztyrMKva0eac0r5N7ZWr3L6VYJCrvI27dPKU0IGpHQfTjOvVV2QhJAWMamsuUTZOmlxK7QpNbtE3W9c8g5bbcCKynonXlrFBVJwWJwM6KRvMTRRRmPBMsQSJUisuaIM8OSkxRcZWMxQLLME5L9OpraepNwk1DEhgR9ZLO6sE/LdYLzZzVaroXWJoNctpdNojkzRhXOWP0m4qZZ3cm9kmuixZE3WxWV4Ss2Gw+MdYXxEzamKacmcvjXyrNHyqtxbK2yBHlpKuhVGsE1OJs547V1k3Xek1a+g/NT02e/stcrbucJ8oO+j1+OXpxa6gj8LVqQJY/a3orNHN3avd5NN5rlmG/RIvHVqrM4aEVQ2ladfRI0p3kjL53ZCt+aZZFWlKBNNs613EqsjRFYYMbOHqB1F8zrL3XeXG3QjIkzQryXI9H7pzTvzcTcz/jj0uGO7sQ3N6r2rkSL5t8cxt43tQzMxZc72QezDG0WVubc0xxk1Gq2luoIazxU+50f0seuSHW6WLHu+vZabOfvRmeDufMWUQyK+OFp49sntKKFSmWNpMSpF6Wpt2dcWdKfGfAC4Wdz63aN5nTbcvSvbkr0/wAvPLM+aGCrWH5D/K1qRjyLZo53ec3oGKNd3F69UvN6Qt7oYm+iv/XtCH82ftNLb8nQjG6oV7h48GzYsLI2x5R2f7k9Zaa+xr1+uWLr9Qpydssfz56J0g6jkqzW7dvdprpKkXu622hFu6zu9WDqr9pdb7lcBRgieYlvSQfjaR8rHpHceSW+Yffc6Y62pBFfStCNHI2z+1W7ZkuhLHH6dVcvo/FtB99zrSzdzZYkOuTGbAn+/Tq9ZrNcpl663kq/hVntxB8HRAVunK3Jhzpbf9zcweh7arDcrNHbV9FY2oVL82fFrqCt5ZdaQuccnFLIb1L3Q21uGY0rQpoqtqKp8VSuFi4Qfk2IMtRHK7ufTg2ekTXSHZZWOhM+60JTrhPGI85bQ2zbJYtVdzNViXq3lPTx7ueNTFvbxVKbzs8WvWR9Ss1XivmrXKyx8xDMdYiZ/drY8YoXcTSwos59BExKbBLbQ5Y6VlSvlytvBb8/Lz7Ic2fVUsVZSBIa8t0bq4YennymvR3NXPiazKp3IbfYvU+uNoUT2/NrZa5j1z6qL4azInnLmld4UK90OhccUmxNE9gWsQ91os6ILK1wtaJrMDfzjniWZEpieesd9RqZ9rNXqIpxafXsg2DZd5sURJHVnWvyGRYznQj7nTDWdY8MzuDZa