что площадь S ≈ 0,2 м2. При приблизительных значениях ρ = 1 кг/м3 и g = 10 м/с2 скорость крыла будет составлять порядка 3 взмахов в секунду, что вполне соответствует реальности между 2 и 3 взмахами в секунду в машущем полете.
10. Площадь крыла серой цапли примерно равна одной десятой квадратного метра
Пойдем дальше и предположим, что все птицы имеют тело той же формы и плотности. Площадь крыльев S в таком случае пропорциональна m2/3, и из предыдущей формулы следует, что количество взмахов крыльев в секунду обратно пропорционально m1/6. Действительно, υ уменьшается при увеличении массы птицы: воробей (масса которого составляет порядка 20–30 г) совершает 13 взмахов в секунду, голубь (масса около 500 г) – до 8–9 взмахов, а сарыч (масса примерно килограмм) – до 3.
А насекомые? На картине Рылова их не видно, так как они слишком малы. У насекомых частота взмахов крыла значительно выше, чем у птиц, что соответствует нашей формуле. Предельный случай – комары, которые совершают примерно 400 взмахов в секунду. Ударяя воздух с такой частотой, насекомое производит слышимый человеком звук, чем предупреждает о своих атаках! Зная, что масса комара составляет 2 мг, и предполагая, что крылья имеют площадь поверхности S порядка 10 мм2, можно заключить, что фактическая частота примерно в 10 раз выше, чем значение, получаемое по нашей формуле. В этом нет ничего удивительного, формула действительно очень приблизительна, и скорее следует удивляться тому, что она дает разумные значения частот взмахов крыльями для крупных птиц и насекомых.
Мог ли художник Рылов, когда писал свою картину, предполагать, что затронет так много законов физики?
Глава 4
В начале XIX века все были уверены, что Земля шарообразна и вращается вокруг своей оси, но экспериментальных свидетельств этому не имелось. Первым неоспоримым доказательством этих фактов стал известный опыт Леона Фуко.
Вращение Земли вокруг своей оси объясняет многие явления, например из области метеорологии и океанографии. Чтобы понять природу этих явлений, нужно научиться их описывать теоретически. Для этого физики прибегают к использованию фиктивной силы, называемой именем Гаспара-Гюстава де Кориолиса.
В 1851 году парижский Пантеон стал местом проведения эксперимента, осуществленного физиком Леоном Фуко (1819–1868). К верхней части купола, на подвесе длиной 67 м, он прикрепил шар массой в 28 кг, создав таким образом маятник (илл. 1), аналогичный балансиру часов наших прабабушек и прадедушек. В отличие от маятника часов, который способен двигаться только в определенной вертикальной плоскости, маятник Фуко мог свободно колебаться в любых направлениях. Эксперимент предполагал отклонить маятник от равновесного положения (вертикального), а затем отпустить и позволить ему свободно колебаться. Поскольку трение крайне мало, маятник может очень долго колебаться без затухания. Что же наблюдали экспериментаторы? При первых колебаниях маятник, казалось, оставался в вертикальной плоскости, определенной осью