«Мир». Но момент для издания был неудачным – годом ранее инквизиция судила Галилея. Теория Коперника, принятая и в книге Декарта, была официально запрещена. Поэтому Декарт решил не печатать этот труд.
Известная всем «Геометрия» Декарта была опубликована в 1637 году. Вряд ли он испытывал влияние Ферма, его метод сложился задолго до выхода «Геометрии», еще в 1620-х годах. Тем не менее собственно геометрические идеи Декарта и Ферма практически тождественны. Заслуга Декарта в том, что он создал новую алгебру, основанную на понятии отношения геометрических величин. Ферма был подвержен влиянию геометрической алгебры греков. У него и математиков, которым он следовал, можно складывать и вычитать только однородные величины, а в коэффициенты обязательно включается указание на их геометрическую природу. При этом простое алгебраическое уравнение раздувается неимоверно. Декарт, прежде всего, был философом, основоположником рационализма, утверждающего неограниченную способность человека познавать мир. Отношения, с которыми имеет дело алгебра Декарта, не геометрические пространственные объекты, а умозрительные понятия – «числа», мало того, выраженные «буквами». Его символика мало чем отличается от современной. Он следует некоторому набору интуитивно ясных истин и использует определенные правила или методы.
Именно Декарт впервые ввел координатную систему, которая является прообразом принятой в наши дни, но идеологически несколько отличается. Он далеко не всегда использовал прямоугольную систему координат. Кривая на плоскости рассматривалась относительно некоторой прямой с делениями. Положение точек кривой задавалось с помощью системы параллельных отрезков, перпендикулярных или наклонных к исходной прямой. Декарт не вводил второй координатной оси, не фиксировал направление отсчета от начала координат. Современное представление координатной системы, получившее имя Декарта, сформировалось только в XVIII веке. В ней для каждой из координат обычно вводят взаимно перпендикулярные оси, расстояния на которых градуированы одинаково. Тогда, например, легко вычисляется длина радиус-вектора в трехмерном пространстве (рис. 4.1):
Рис. 4.1. Система координат Декарта
r2 = x2 + y2 + z2 = a2 + b2 + c2.
В итоге, появилось ясное понимание, как определить положение тела (точки) как на плоскости, так и в 3-мерном пространстве.
Абсолютные пространство и время
Итак, мы отметили два ключевых понятия: протяженность и длительность. Возникает вопрос: по отношению к чему производить их измерение? Один из ответов, кажущийся наиболее естественным, состоит в признании существования абсолютного пространства и времени. Тогда и протяженность, и длительность, и абсолютные пространство и время приобретают самостоятельный физический смысл, становятся частью всего физического учения.
Как определял «абсолютное» пространство Ньютон?